
International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (42-50), Month: October-December 2013, Available at: www.researchpublish.com

Page | 42
Research Publish Journals

Design and Analysis of Security Aware Scheduling

in Grid Computing Environment

Mudassir Khan

Department of Computer Science

 King Khalid University, KSA

Abstract-- Grid computing solves large scale applications by coordinating and sharing computational power, data

storage and network resources across dynamic and geographically dispersed organizations by providing high

performance computing platform with the goal of providing users with access to the resource they need, even when

they need. Grids provide remote access to IT assets, and aggregate processing power. The goal of scheduling is to

achieve highest possible system throughput and to match the application need with the available computing resources.

Scheduling on to the Grid is NP complete, so there is no best scheduling algorithm for all grid computing systems. The

basic grid model generally composed of a number of hosts, each composed of several computational resources, which

may be homogeneous or heterogeneous. In recognition that many applications running on Grids demand both real-

time performance and security. In this research proposal the problem of Security Aware- Scheduling on real time

applications with various security requirements for Grid Computing environment is discussed. In the work security

aware scheduling models with better load distribution for achieving a flexible trade-off between overhead caused by

security services and system performance are proposed considering security middleware model (SMW) and its peer

technologies by which security-sensitive real-time applications are enable to exploit a variety of security services to

enhance trustworthy executions of the applications.

Keywords- Grid Computing, Grid Scheduling, Security aware model

1. Introduction

The growing number of devices and thus mostly unused resources connected to the internet triggered many different

ideas to share available computing and storage resources. In 1998 Ian Foster and Carl Kesselman defined in the book The

Grid: Blueprint for a new Computing Infrastructure a computational grid as a hardware and software infrastructure that

provides dependable, consistent, pervasive, and inexperience access to high-end computational capabilities. In general, grid

computing provides users with the ability to divide and spread large computations across multiple machines as well as access

to distributed storage and collaboration possibilities within virtual organizations. Grid allows the simultaneous use of large

numbers of resources, dynamic requirements, use of resources from multiple administrative domains, complex

communication structures, and stringent performance requirements.

The goal of a grid computing, like that of the electrical grid, is to provide users with the access to the resources they

need, when they need them. Scheduling on to the grid is NP complete, so there is no best scheduling algorithm for all grid

computing systems. An alternative is to select an appropriate scheduling algorithm to use in a given grid environment because

of the characteristics of the tasks, machines and network connectivity. Security Aware Scheduling is one of the key research

areas in grid computing. The goal of scheduling is to achieve highest possible system throughput and to match the application

need with the available computing resources [1-3].

2. Basic Grid Model

The basic grid model generally composed of a number of hosts, each composed of several computational resources,

which may be homogeneous or heterogeneous. The four basic building blocks of grid model are user, resource broker, grid

information service (GIS) and lastly resources [3].

www.researchpublish.com
http://www.researchpublish.com/

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (42-50), Month: October-December 2013, Available at: www.researchpublish.com

Page | 43
Research Publish Journals

Figure 1: Basic Grid Model [3]

 When user requires high speed execution, the job is submitted to the broker in grid. Broker splits the job into various

tasks and distributes to several resources according to the user requirements and availability of resources. GIS keeps the status

information of all resources which help the broker for scheduling.

 Security aware scheduling provides an efficient selection of resources in a single administrative domain, taking into

account the features of the jobs and resources, including the status of the network. However, only data associated with Grid

jobs was considered-which is unlikely to be the case in practice.

We improve upon this by considering a more realistic way of checking the status of the network. We can say that this model

will use feedback from resources and network elements in order to improve system performance. Scheduler will therefore

adapt its behavior according to the status of the system, paying special attention to the system of network. The scenario is

depicted in Figure 2 [1, 5] and has the following entities [1, 5].

 Users: Each one has a number of jobs to run.

 Computing Resources: May consist of single machine or clusters of machines.

 Routers:(write something)

 GNB (Grid Network Broker): An automatic network-aware scheduler.

 GIS (Grid Information Service): Which keeps a list of available resources?

 Resource Monitor: Which provides detailed information on the status of resources?

 BB (Bandwidth Broker): Which is in charge of administrative domain, and has direct access to the routers. BB can be

used to support reservation of network links, and keep track of the interconnection topology between two end points

within a network.

 Figure 2: Grid scheduling Architecture

User 0

User N

Res 0 Res M

R0

R1

R2

R3

R4

R5

GNB

GIS

Resource Monitor

BB

www.researchpublish.com
http://www.researchpublish.com/

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (42-50), Month: October-December 2013, Available at: www.researchpublish.com

Page | 44
Research Publish Journals

The interaction between components within the architecture is explained as represented in the Figure 2 as follows.

 Users ask the GNB for a resource to run their jobs. Users provide jobs and deadlines.

 The GNB performs two operations on each job. First it performs scheduling of that job to a computing resource, and

second, performs connection admission control (CAC).

 The GNB makes use of the GIS in order to get the list of available resources, and then it gets their current load from

the resource monitor.

 The GNB makes use of the BB in order to carry out operations requiring the network.

 Once the GNB has chosen a computing resource to run a job, it submits the job to that resource. On the completion

of the job, the GNB will get the output sent back from the resource, and will forward to the user. Also, the GNB will

update information about the accuracy of its decisions, considering CPU and transmission delays.

3. The Grid Scheduling

 The term Scheduling can be understood as the allocation of machines or processors over time to perform a collection of

tasks or as the problem of finding the optimal temporal assignment of some resources to certain tasks [6].

 Scheduling is a way in which processes assigned to run on suitable systems in such a way the scheduling parameters

are optimized. The scheduling parameters could be throughput, system utilization, and turnaround time, waiting time,

response time, fairness or any other QoS parameter. Some of these parameters are discuss below [7].

 Throughput is measured as number of tasks executed per unit time. There are many possible throughput metrics

depending on the definition of unit of work. Examples of throughput metrics at the resource layer include the

effective transfer rate in Kbytes/sec under the Grid-FTP protocol and the number of queries/sec that can be processed

by the database server of a law enforcement agency needed by the RAM application.

 System Utilization is to keep system as busy as possible.

 Turnaround time is estimated as the time taken by the job from its submission to the final execution. Thus, it is

always expected from a computational grid scheduler to allocate the job to those grid resources which results in the

faster overall execution of the job i.e. with minimum turnaround time.

 Waiting time is amount of time spend to wait by a particular job in system for getting a resource. In other words

waiting time for a job is estimated as the time taken by the job from its submission to the get system for execution.

The waiting time depend on the parameters similar as turnaround time.

 Response time is amount of time to get first response in time sharing system. The response time depend on the

parameters similar as turnaround time.

 Fairness of system is defined as the time taken by each system in grid environment is same

3.1 Types of scheduling

Different types of scheduling [6, 7] are found in Grid systems as applications could have different scheduling needs such

as batch or immediate mode, on the other hand, the Grid environment characteristics themselves impose restrictions such as

dynamics, use of local schedulers, centralized or decentralized approach, etc. In order to achieve the desired performance,

both the problem specifics and Grid environment information should be “embedded” in the scheduler. In the following, the

main types of scheduling arising in Grid environments are described.

 Static versus Dynamic Scheduling: There are essentially two main aspects that determine the dynamics of the Grid

scheduling, namely: (a) The dynamics of job execution, which refers to the situation when job execution could fail

or, in the pre-emptive mode, job execution is stopped due to the arrival in the system of high priority jobs; and (b)

The dynamics of resources, in which resources can join or leave the Grid in an unpredictable way, their workload can

significantly vary over time, the local policies on usage of resources could change over time, etc. These two factors

decide the behavior of the Grid scheduler, ranging from static to highly dynamic. For instance, in the static case,

there is no job failure and resources are assumed available all the time. Although this is unrealistic for most Grids, it

www.researchpublish.com
http://www.researchpublish.com/

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (42-50), Month: October-December 2013, Available at: www.researchpublish.com

Page | 45
Research Publish Journals

could be useful to consider for batch mode scheduling: the number of jobs and resources is considered fixed during

short intervals of time and the computing capacity is also considered unchangeable. Other variations are possible to

consider the dynamics of resources and jobs.

 Single Criterion versus Multi-criteria Scheduling: If there is only one criterion to optimize, we are dealing with

scheduling problems and models with a single criterion. Its characteristics are collected in the parameter if several

criteria are considered, we are dealing with multi-criteria scheduling problems and models and the parameter r is

replaced by a vector of parameters. Multi-criteria scheduling problems are usually more difficult than single criteria

ones.

 Centralized Scheduling: Single job scheduler on one instance and all information are collected here. The scheduler

is conceptually able to produce very efficient schedules, because the central instance has all necessary information on

the available resources .Centralized scheduling is categorized into two forms.

 Decentralized Scheduling: No central instance is responsible for having information about state of all system and

distributed schedulers interact with each other and decide the allocations for each job to be performed. Local job

schedulers may have different but compatible scheduling policies .No communication bottleneck, scalable to greater

extent, failure of single component doesn’t affect whole meta-system and better fault tolerance and reliability than

centralized systems Decentralized Scheduling also is of two types.

4. Issues and Challenges in Grid Scheduling

Now day’s security is of critical importance for a wide range of real-time applications. Section 4 describes issues and

challenges in scheduling the context of Grid environments in detailed [8].

4.1 Resource Management Issues

The resources that are coupled in grid computing environment are geographically distributed and different individuals or

organizations own each one of them and they have their own access policy, cost, and mechanism. The resource owners

manage and control resources using their favorite resource management and scheduling system (called local scheduler) and

the grid users are expected to honor that and make sure they do not interfere with resource owners’ policies. They may charge

different prices for different grid users for their resource usage and it may vary from time to time. The global resource

management and scheduling systems (e.g., Nimrod/G), popularly called grid schedulers or meta-schedulers, coordinate the

user access to remote resources in cooperation with local schedulers(e.g., Condor and LFS) via grid middleware services

[20,21]

4.2 Load Balancing in Grid Computing Environments

Load balancing is a computer networking method to distribute workload across multiple computational machine, network

links, central processing units, disk drives, or other resources, to achieve optimal resource utilization, maximize throughput,

minimize response time, and avoid overload. Using multiple components with load balancing, instead of a single component,

may increase reliability through redundancy. The load balancing service is usually provided by dedicated software or

hardware, such as a multilayer switch or a Domain Name System server. To minimize the time needed to perform all tasks,

the workload has to be evenly distributed over all nodes which are based on their processing capacity. The Load Balancing

problem is closely related to scheduling and resource allocation. It is concerned with all the techniques allowing and evenly

distribution of the workload among the available resources in a system. The main objective of a load balancing consists

primarily to optimize the average response time of applications: this often means the maintenance the workload proportionally

equivalent on whole system resources. Load balancing is usually described in the literature as either load balancing or load

sharing and load leveling [12].

The Load Balancing mechanism [12]can be broadly categorized as

 Centralized or Decentralized

 Dynamic or Static

 Periodic or Non-periodic

www.researchpublish.com
http://www.researchpublish.com/
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Redundancy_(engineering)
http://en.wikipedia.org/wiki/Multilayer_switch#Layer_4_Load_Balancer
http://en.wikipedia.org/wiki/Domain_Name_System

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (42-50), Month: October-December 2013, Available at: www.researchpublish.com

Page | 46
Research Publish Journals

4.3 Fault Tolerant Issues

Since grids are highly dynamic in nature, so must handle failure in the resources and check how changes in the topology and

computational capability of the grid resources affect the efficiency in terms of deadline of the tasks. In case of fault treatment,

using replication and other techniques, it is interesting to develop a viable economic model that could provide an execution

environment, which guarantees certain minimum cost and time even in the presence of failures, unlike present fault tolerant

approaches where, usually, cost increases exponentially. The existing reliability and fault tolerance model may be augmented

by considering scalability and security into consideration. Most of the approaches of fault tolerance are based on the

prediction of failure probability of the resources in certain time interval. It is hard to achieve the resource failure prediction

even with years of historic trace data. Hence, efficient techniques are required which do not base their decisions on the

specific failure model and do not rely on the failure prediction accuracy [16].

4.4 Scalability support in hardware

Methods of adding more resources for a particular application fall into two broad categories, vertical scale up and horizontal

scaling. In the past, the price difference between the two models has favored "scale out" computing for those applications that

fit its paradigm, but recent advances in virtualization technology have blurred that advantage, since deploying a new virtual

system over a hypervisor (where possible) is almost always less expensive than actually buying and installing a real one.

Larger numbers of computers means increased management complexity, as well as a more complex programming model and

issues such as throughput and latency between nodes; also, some applications do not lend themselves to a distributed

computing model. Scalability support in hardware is bandwidth and latencies to memory plus interconnects between

processing elements. The scalability can be measured by the capacity of the real-time distributed systems in the sense that

how the quality of security and guarantee ratio can be scaled by adding additional nodes, memory, or processing power [8,9]

4.5 Security Issues

The security requirements of a task include how to specify the security of the task, the possible range of the security quality

and the overhead of achieving some particular degree of security quality. The difficulty lies in measuring the quality of

security of real-time tasks. To the best of our knowledge, no existing literature has directly addressed the issue of accurately

estimating security overhead experienced by security-critical real-time applications, and this becomes a significant open issue

in the development of real-time security-aware scheduling schemes. Moreover, another challenge is to design and implement

real-time security-aware scheduling schemes, which can meet specific real-time and security requirements of applications

executing in distributed systems. The ultimate goal of security-aware scheduling is to guarantee security constraints in

addition to real-time requirements of tasks running in distributed systems [4, 5].

5. Security and Real-Time Requirements

Recently, real-time application with security requirements increasingly emerged in large scale distributed systems like

Grids. The security-aware scheduling algorithms can improve security of real-time applications while maintaining a high level

performance for Grids. An increasing number of real-time applications have security constraints because sensitive data and

processing require special safeguards against unauthorized access. For example, a variety of real-time applications such as

aircraft control systems running on parallel and distributed systems require security protections to completely fulfill their

needs. As such, it is mandatory to deploy security services to guard security-critical applications running on Grids. Snooping,

alteration, and spoofing are three common attacks in Grid environments and therefore, we consider three security services

(authentication service, integrity service, and confidentiality service) to guard against common threats. Snooping, an

unauthorized interception of information can be countered by confidentiality services. Alteration, an unauthorized change of

information can be countered by integrity services. Spoofing, an impersonation of one entity by another can be countered by

authentication services. With these three securities services in place, user can flexibility select the security services to form an

integrated security protection against a diversity of threats and attacks in a Grid computing environment [10].

www.researchpublish.com
http://www.researchpublish.com/
http://en.wikipedia.org/wiki/Hypervisor

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (42-50), Month: October-December 2013, Available at: www.researchpublish.com

Page | 47
Research Publish Journals

An Example of Security- Sensitive Real-Time Applications

In general the server performs the following security operations [10]on behalf of its clients.

 Establishes secure connections with business partners and back-end applications

 Applies and verifies digital signatures

 Authorizes access based on digital certificates

 Validates credentials in real time using public key infrastructure

 Encrypts and decrypts request and responses

5.1 A Security-Aware Middleware Model

 Recently, real-time applications with security requirements increasingly emerged in large scale distributed system

like Grids. However, complexities and specialties of diverse security mechanisms dissuade users from employing existing

security services for their applications. A security middleware model (SMW) [10] by which security-sensitive real-time

applications are enabled to exploit a variety of security services to enhance trustworthy executions of the applications. A

quality of security control manager (QSCM), which is a centerpiece of the SMW model, is designed and implemented to

achieve a flexible trade-off between overheads caused by security services and system performance, especially under

situations where available resources are dynamically changing and insufficient. A security-aware scheduling mechanism,

which plays an important role in QSCM, is capable of maximizing quality of security for real-time applications running

on Grids.

5.1.1 Security Middleware model (SMW)

 Middleware is software that sits between two or more types of software and translates information between

them. It is used to solve computer clients' heterogeneity and distribution issues by offering distributed system services

that have standard programming interface and protocols. The aim of security middleware (SMW) model is to meet

security requirements of a variety of applications and improving performance of distributed real-time systems.

5.1.2 Architecture of the SMW Model

 The SMW model consists of a user interface, a framework, low-level security service APIs, a quality of security

control manager, and security middleware services (see in Figure 3). The SMW model provides two different types of

user interfaces, namely, a professional user interface and a normal user interface. The professional user interface is an

interface between developers (e.g. programmers) and applications being developed. An editor, a compiler and a debugger

are essential components of the professional user interface. Programmers are allowed to directly access the low-level

security service APIs, thereby efficiently constructing applications with various security functions. A normal user

interface sits between a normal user and the framework. By using the normal user interface, usually and IDE (Integrated

Development Environment), a normal user such as a system administrator can leverage the framework to readily create

applications with security requirements [10].

 Figure 3: Security Middleware Architecture [10]

Application Tool

Application Application

Platform
 OS
 Hardware

Platform
 OS
 Hardware

Platform InterfacePlatform Interface

Framework

High-Level Security Service APIs

Mapping to
Middleware Services

Framework
Private Service

User

Low-Level Security Service APIs

 Quality of Security Control Manager

 Middleware Services (Including Security Services)

 Quality of Security Control Manager

Middleware Services (Including Security Services)

www.researchpublish.com
http://www.researchpublish.com/

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (42-50), Month: October-December 2013, Available at: www.researchpublish.com

Page | 48
Research Publish Journals

 5.2 Security- Aware Scheduling Architecture

An m-node grid in which m identical nodes are connected via a high-speed network, e.g., Fast Ethernet, to process

soft real-time tasks submitted by r users. Let N = {N1, N2..............., Nm} denote a set of identical computational nodes.

The architecture of security-aware real-time scheduling shown in Figure 4 encompasses the SAREC (Security-Aware

Scheduling Strategy for Real-Time Applications on Clusters and Grids) strategy and a real-time scheduler. The SAREC

strategy is implemented in form of a security level controller and an admission controller. A real-time scheduler using the

EDF policy, which can be substituted by other real-time scheduling policies, is presented. The admission controller

determines if an arriving task in a schedule queue can be accepted or not, whereas the security level controller aims at

maximizing the security levels of admitted tasks [10].

Figure 4: Security Aware Scheduling Architecture [11]

The schedule queue maintained by the admission controller is deployed to accommodate incoming real-time

tasks. If the deadline and minimal security requirements of an incoming task can be guaranteed, the admission controller will

place the task in an accepted queue for further processing. Otherwise, the task will be dropped into a rejected queue. The real-

time scheduler processes all the accepted tasks by its scheduling policy before the tasks are transmitted into a dispatch queue,

where the security level controller escalates the security level of first task under two conditions: (1) the security level

promotion will not take the first task miss is deadline; and (2) increasing the security level will not make any previously

accepted task miss its deadline. After being handled by the security level controller, the task is dispatched to one of the

designated node Ni for all N referred to as a processing node for execution. For each processing nodes maintain a local queue

[11].

6. Soft Computing Approaches

Soft computing approaches [20] are a large family of methods that have shown their efficiency for solving combinatorial

optimization problems. Soft computing approaches usually require large running times if suboptimal or optimal solutions are

to be found. However, the objective is to find feasible solutions of good quality in short execution times, as in the case of Grid

scheduling, we can exploit the inherent mechanisms of these methods to increase the convergence of the method. Some

popular soft computing approaches used in grid scheduling are as follows.

www.researchpublish.com
http://www.researchpublish.com/

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (42-50), Month: October-December 2013, Available at: www.researchpublish.com

Page | 49
Research Publish Journals

6.1 Genetic Algorithm

Genetic Algorithm is one approach from the various soft-computing approaches which can be used to find a

solution in less time although it might not be the best solution. GA works on the basis of natural selection and evolution.

The GA operators are applied over a randomly generated population which comprised of a set of chromosomes

(solutions), in each generation. These chromosomes are evaluated against a fitness function derived on the basis of the

optimization objective. The chromosomes that offer best finesses are selected for mating to reproduce offspring. This

procedure is iterated over the generations resulting in good parents to reproduce better offspring. The process stops when

the result converges. GA uses various operators to implement this operation which are as follows [19].

6.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is a probabilistic technique for solving computational problems which can be

reduced to finding good paths through graphs. Initially proposed by Marco Dorrigo in 1992 Ant Colony Optimization

(ACO) studies artificial systems that take inspiration from the behavior of real ant colonies and which are used to solve

discrete optimization problems. In the real world, ants (initially) wander randomly, and upon finding food return to their

colony while laying down pheromone trails. Each ant moves at random. Pheromone is deposited on path. Ants detect lead

ant’s path, inclined to follow. More pheromone on path increases probability of path being followed [20].

6.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a computational method that optimizes a problem by iteratively trying to

improve a candidate solution with regard to a given measure of quality. Such methods are commonly known as meta-

heuristics as they make few or no assumptions about the problem being optimized and can search very large spaces of

candidate solutions. However, meta-heuristics such as PSO do not guarantee an optimal solution is ever found [20].

7. Proposed work

Grid computing meant to enable the users in performing high performance computing in a collaborative and shared

manner. The resources in grid are computational resources (nodes) as well as data, storage or something else for executing the

job or applications available. Among all these resources, CPU is one with most importance when being concerned with the

computational grid as these are responsible for effective execution of the job. Therefore, scheduling a job on them becomes a

very challenging job with the problem being how to allocate the appropriate grid resources to the job demanding execution

while primarily meeting the objective of high throughput and low latency. But the mapping of these resources on the jobs

considering security requirements is not an easy job as the participating resources forming the grid are heterogeneous in

nature with heterogeneity varying from type, size, management systems to management policies to name a few. In the work,

we propose to develop security aware scheduling models to effectively schedule a job on the grid resources optimizing the

quality of service parameters (e.g. Makespan, utilization, throughput, matching proximity, flow time, memory usage, security

performance matrices, reliability, etc.) by using the scheduling heuristics (e.g. Min-Min, Max-Min, MET, MCT, etc.) , soft

computing approaches as GA, ACO, PSO, etc and hybridized of them with considering the security aware scheduling

architecture for the purpose of achieving the security requirements. The work will be finished by analyzing the performance of

the models by comparing with similar models in the literature.

References

1. Ian Foster, Carl Kesselman, The Grid 2: Blueprint for a Future Computing Infrastructure. Second Edition ,Morgan Kauffman,

2006.

2. Uwe Schwiegelshohn , Rosa M. Badia , Marian Bubak ,(et. al.), Perspectives on Grid Computing . Science Direct (ELSEVEIRE),

2010 .

3. Ian Foster, Carl Kesselman and Steven Tuecke, The anatomy of the Grid Enabling scalable virtual organizations, International

Journal of High Performance Computing Applications 15 (3) (2001), pp. 200–222.

4. D. Kebbal, E.G. Talbi, J.M. Geib, “Building and Scheduling Parallel Adaptive Applications in Heterogeneous Environments”, 1st

IEEE Computer Society International Workshop on Cluster Computing, Melbourne, Australia, December 02 - 03, 1999.

www.researchpublish.com
http://www.researchpublish.com/
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Marco_Dorigo
http://en.wikipedia.org/wiki/Marco_Dorigo
http://en.wikipedia.org/wiki/Marco_Dorigo
http://en.wikipedia.org/wiki/Random
http://en.wikipedia.org/wiki/Pheromone
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Metaheuristic

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (42-50), Month: October-December 2013, Available at: www.researchpublish.com

Page | 50
Research Publish Journals

5. Radulescu, Arjan J.C. van Gemund, “Fast and Effective Task Scheduling in Heterogeneous Systems”, In Proc. of the 12th

Euromicro conferences on Real-time Systems, pp229-238, 2000.

6. Baker, K.R., "Introduction to Sequencing and Scheduling.”, John Wiley, 1974.

7. Xhafa, F., Abraham, A., "Computational Models and Heuristic Methods for Grid Scheduling Problems”, Future Generation

Computer Systems, Elsevier, pp. 608-621, 2010.

8. Open Issues in Grid scheduling workshop. National e Science centre. http://www.nesc.ac.uk/technical_papers/UKeS-2004-03.pdf

(Oct, 2003).

9. Abawajy, J. H., “Fault-Tolerant Scheduling Policy for Grid Computing Systems”, Proceedings of the 18th international Parallel

and Distributed Processing Symposium (IPDPS ’04)

10. C.-J. Hou and K. G. Shin, “Allocation of Periodic Task Modules with Precedence and Deadline Constraints in Distributed Real-

Time Systems”, IEEE Trans. Computers, Vol. 46, No. 12, pp.1338-1356, Dec. 1997.

11. H. Topcuoglu, S. Hariri, M.-Y. Wu, “Task Scheduling Algorithms for Heterogeneous Processors”, In Proc. of 8th Heterogeneous

Computing Workshop, pp.3-14, 1999.

12. M.E. Thomadakis and J.-C. Liu, “On the efficient scheduling of non-periodic tasks in hard real-time systems” Proc. 20th IEEE

Real-Time Systems Symp., pp.148-151, 1999.

13. Quan Liu, Yeqing Liao, “Grouping-Based Fine-grained Job Scheduling in Grid Computing”, IEEE First International Workshop

on Education Technology and Computer Science, vol.1, pp. 556-559, 2009.

14. T.F. Abdelzaher, E. M. Atkins, and K.G. Shin., “QoS Negotiation in Real-Time Systems and Its Application to Automated Flight

Control” , IEEE Trans. Computers, Vol. 49, No. 11, Nov. 2000, pp.1170-1183

15. S. H. Son, R. Mukkamala, and R. David, “Integrating security and real-time requirements using covert channel capacity”, IEEE

Trans. Knowledge and Data Engineering, Vol. 12, No. 6, pp. 865 – 879, Nov.-Dec. 2000.

16. P. Koopman, “Embedded System Security” IEEE Computer, Vol. 37, No. 7, pp. 95-97, July 2004.

17. Irvine and T. Levin, “Towards a taxonomy and costing method for security services”, Proc. 15th Annual Computer Security

Applications Conference, pp.183–188, 1999.

18. M. Bishop, “Computer Security: Art and Science,” Addison Wesley Professional, ISBN 0201440997; Published: Dec 2, 2002.

19. D. Goldenberg, “Genetic Algorithms in Search Optimization and Machine Learning”, Pearson Education, 2005.

20. http://en.wikipedia.org/wiki/Soft_computing

www.researchpublish.com
http://www.researchpublish.com/

