
International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (65-73), Month: October-December 2013, Available at: www.researchpublish.com

Page | 65
Research Publish Journals

Towards Minimizing Processes Response Time in

Interactive Systems

Samih M. Mostafa1, 2, Shigeru Kusakabe2

1
Faculty of Science, Mathematics Department, South Valley University, Quena, Egypt.

2
 Graduate School of Information Science and Electrical Engineering, Kyushu

University, Japan.

Abstract: This study considers the process scheduling problem of minimizing the response time (RT) of processes. In This

study we schedule a batch of n processes, for servicing on a single resource, in such a way that the response time is

minimized. RT minimization finds its applications for process scheduling in manufacturing interactive systems in

computer and networks systems for the stabilized QoS, and in other fields where it is desirable to minimize RT of processes

with different weights for priorities. We formulate a RT problem as an integer programming problem. Numerical testing

shows that proposed technique significantly outperforms existing algorithms. In this paper we use task and process terms

interchangeably.

Keyword: Process/tasks scheduling, residual time, survived processes, cyclic queue.

I. INTRODUCTION

In order to design a scheduling algorithm, it is necessary to have some idea of what a good algorithm should do. Some goals

depend on the environment (batch, interactive, or real time), but there are also some that are desirable in all cases. For interactive

systems, especially timesharing systems and servers, different goals apply. The most important one is to minimize response time,

that is the time between issuing a command and getting the first response [4]. This paper will analyse only the process response

time for uni-processor systems. To this end, we utilize the following assumptions throughout this paper to simplify the problem

formulation:

 Processes are belong to interactive environment (i.e., processes are premptive). In an environment with interactive users,

preemption is essential to keep one process from hogging the CPU and denying service to the others. Even if no process

intentionally ran forever, due to a program bug, one process might shut out all the others indefinitely. Preemption is

needed to prevent this behavior,

 Processes are of variable size in terms of number of instructions which may range anywhere from instructions up to

thousands or greater for some interactive processes.

 No process is rated more important than any other process,

 Each process is considered to be independent of all others, i.e., there is no communication between processes running on

the processor,

 The CPU cost of each process is assumed to be known.

 New processes are permitted to enter the queue.

From these assumptions, it is clear that the problem has been reduced to almost the simplest formulation. The most common

method of process scheduling in interactive systems that apply when these assumptions are made is the round-robin (RR). The

round-robin algorithm is cosidered to be a preemptive scheduler, it is opposite to non-preemptive algorithms. RR is also one of the

oldest, simplest and most widely used proportional share scheduling algorithms, and because of its usefulness, many proportional

share scheduling mechanisms have been developed [9, 1, 14, 8, 10, 3, 13, 11]. In addition, RR algorithms have low scheduling

overhead of O(1), which means scheduling the next process takes a constant time [7, 6, 12, 17, 18].

Briefly RR scheduling dose not reorder the processes but allows preemption to occur so that processes that take longer than a

designated time quantum are put to the back of the cyclic queue for processing at a later time. This paper elaborates the RR

scheduling policy by allowing the time quantum to vary after each round throgh the cyclic queue. The terms process and process

are used almost interchangeably in this text.

With the simple problem formulation, the main purpose of the proposed work is to minimize the following criteria:

i) average process response time and

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (65-73), Month: October-December 2013, Available at: www.researchpublish.com

Page | 66
Research Publish Journals

ii) average process waiting time (i.e., the average amount of time a process waits while other processes are being processed).

The main factor with the preemptive scheduler is the size of the time quantum. Setting the time quantum too short causes too many

processes switches and lowers the CPU efficiency, but setting it too long may cause poor response to short interactive requests. A

quantum around 20-50 msec is often a reasonable compromise [5].

Latest algorithms [2, 15, 16] try to modify RR by adjusting the time quantum. In the successive sections we will introduce how we

can improve the round-robin algorithm by readjusting the size of the time quantum to achieve the above criteria. In each round in

the queue the time quantum will be modified according to the burst times of the processes. Using Changeable Time Quantum

(CTQ) gives significant improvement in the above criteria.

II. CTQ DEFINITIONS

To provide a more in depth description of CTQ, we first define more precisely the state CTQ associates with each round,

and then describe in detail how CTQ uses that state to schedule processes. We define the terminology list we use in TABLE 1.

TABLE 1: CTQ Terminology

iT Process i.

][iTNTQ =
iNTQ The number of times the process iT exploits the time quantumTQ .

][iTBT =
iBT The burst time of the process iT .

TQ The time quantum.

n The number of the processes.

][iTSLTQ The starting of the last time quantum of iT .

][iTWT The waiting time of process iT .

TWT

The total waiting time of all processes.

AVGWT The average waiting time of the processes in the run queue.

][iTRST The residual time of iT .

The following equations determine the time quantum TQ that gives the smallest average waiting time in each round. TQ is ranged

from α up to the given operating system time slice (OSTS), where α ≤ OSTS.

,...3,2,1

*][1
][

,...3,2,1

*][
][

][

1

l

TQlTBTif
TQ

TBT

l

TQlTBTif
TQ

TBT

TNTQ

i
i

i
i

i

 (1)

TABLE 2 exhibits an example, in which each process with its burst time:

TABLE 2: Example 1

PROCESS BURST TIME

T1 24

T2 3

T3 3

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (65-73), Month: October-December 2013, Available at: www.researchpublish.com

Page | 67
Research Publish Journals

If we use a time quantum of 4 ms. we see from the Gantt Chart:

T1 T2 T3 T1 T1 T1 T1 T1

 0 4 7 10 14 18 22 26 30

that the NTQ[T1] is 5, the NTQ[T2] is 0, and the NTQ[T3] is 0, although the number of context switches of T1 is 1, the number of

context switches of T2 is 0, and the number of context switches of T3 is 0.

n

ikk

k

iki

iki

ikk

ikk

i

i

k

i

kk

k

i

NTQif

ikandNTQNTQifTQNTQ

ikandNTQNTQifTQNTQ

ikandNTQNTQifBT

ikandNTQNTQifBT

TQNTQ

NTQif
NTQifBT

NTQifTQ

TSLTQ

,1

1

1

0

*)1(

)*(

*

0
0

0
0

][

(2)

In the above example the SLTQ[T1] is 26, the SLTQ[T2] is 4, and the SLTQ[T3] is 7.

nTWTAVGWT

TWTTWT

TQTNTQTSLTQTWT

n

i

i

iii

/

][

*][][][

1

III. THE CHANGEABLE CONSIDERATION

CTQ combines the benefit of low overhead round-robin scheduling with low average response time and low average

waiting time, this depends on the size of the preselected time quantum. If we have n processes in a round r1 and m processes that

have burst times equal to or less than the time quantum used in r1, then there are n-m processes in the next round, where n ≥ m.

The residual time of the process Ti in the round number q is determined from the equation:

1

1

][][][
q

k

ii kTQTBTTRST (6)

Where TQ[k] is the time quantum in the round number k. In each successive round we implement the equations with respect to the

residual times of the survived processes.

IV. ILLUSTRATIVE COUNTER EXAMPLES

To demonstrate the previous consideration we will take two cases of example. In the first one, the processes arrive at the

same time and in the second; the processes arrive at different times.

Consider the following set of processes in TABLE 3 that arrive at time 0, each of which with the length of the CPU burst time and

the response time.

(3)

(4)

(5)

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (65-73), Month: October-December 2013, Available at: www.researchpublish.com

Page | 68
Research Publish Journals

TABLE 3: Example 2A

Process Id Burst Time Response Time

T1 23 22

T2 75 57

T3 93 8

T4 48 16

T5 2 1

When we apply the (CTQ) technique, the time quantum in the first round is equal to 25, TQ[1] = 25.

(ROUND NO. 1)
(]1[TQ = 25)

T1 T2 T3 T4 T5

 0 23 48 73 98 100

The survived processes are T2, T3, and T4 each of which with the length of the CPU burst time.

Process Id Residual Time Response Time

T1 0 22

T2 50 not yet

T3 68 56

T4 23 89

T5 0 99

After implementing the equations, we obtain TQ[2] = 25, the Gantt Chart is:

(ROUND NO. 2)

(]2[TQ =25)

T2 T3 T4

 100 125 150 173

from the survived processes,

Process Id Residual Time Response Time

T1 0 22

T2 25 not yet

T3 43 56

T4 0 89

T5 0 99

the equations give TQ[3] = 43, the Gantt Chart is:

(ROUND NO. 3)

(]3[TQ = 43)

T2 T3

 173 198 241

In this example there are three rounds; at each one a different time quantum is used. The following table gives each process

response time during execution

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (65-73), Month: October-December 2013, Available at: www.researchpublish.com

Page | 69
Research Publish Journals

Process Id Residual Time Response Time

T1 0 22

T2 0 180

T3 0 56

T4 0 89

T5 0 99

Now we will consider the above example when the processes arrive at different arrival times. TABLE 4 summarizes the burst time,

response time, and arrival time of each process. We will compare the round-robin with fixed time quantum equal to 50 msec

against our algorithm. TABLE 5 and 6 show the policy of each algorithm.

TABLE 4: Example 2B

Process

Id
Burst Time

Response Time Arrival Time

T1 23 22 0

T2 75 57 20

T3 93 8 22

T4 48 16 50

T5 2 1 55

TABLE 5: Round-Robin policy of Example 2B

Process

ID

Service

Time

Response

Time

Arrival

Time

Start

Time

Finish

Time
Preemption

Turnaround

Time

Waiting

Time

Response

Time

T1 23 22 0 0 23 23 0 22

T2
75

25
57 20

23

173

73

198

end of

quantum;

T3 starts

178 103 160

T3
93

43
8 22

73

198

123

241

end of

quantum;

T4 starts

219 126 59

T4 48 16 50 123 171 121 73 89

T5 2 1 55 171 173 118 116 117

Mean 131.8 83.6 89.4

TABLE 6: CTQ policy of Example 2B

Process

ID
Service

Time
Response

Time
Arrival
Time

Start
Time

Finish
Time

TQ
Preemption

Turn-
around
Time

Waiting
Time

Response
Time R1 R2 R3

T1 23 22 0 0 23 23 23 0 22

T2
75
37

57 20
23
149

61
186

38

50

End
of

quantum;

T3 starts

166 91 148

T3
93

55
8 22

61

186

99

241

End

of
quantum;

T4 starts

219 126 47

T4 48 16 50 99 147 97 49 65

T5 2 1 55 147 149 94 92 93

Mean 119.8 71.6 75

In what follows, the number in parentheses in the comment field is the remaining service time for the process. In order of

execution:

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (65-73), Month: October-December 2013, Available at: www.researchpublish.com

Page | 70
Research Publish Journals

Time
Ready
Queue

Time Quantum
Comments

0 T1 TQ = 23 T1(23) arrives, run

20 T1, T2
 T2(75) arrives and is appended to the queue, T1(3) continues to

run

22
T1, T2,

T3

 T3(93) arrives and is appended to the queue, T1(1) continues to

run

23 T2, T3 TQ = 38 T1(0) finished, so T2(75) runs

50
T2, T3,

T4

T4(48) arrives and is appended to the queue, T2(48) continues to

run

55
T2, T3,

T4, T5

T5(2) arrives and is appended to the queue, T2(43) continues to

run

61
T3, T4,

T5, T2

The quantum expires, so T2(37) moves to the end of the queue

and T3(93) runs

99
T4, T5,

T2, T3

TQ = 50 The quantum expires, so T3(55) moves to the end of the queue

and T4(48) runs

147
T5, T2,

T3

T4(0) finished, so T5(2) runs

149 T2, T3 T5(0) finished, so T2(37) runs

186 T3 T2(0) finished, so T3(55) runs

V. SIMULATION STUDIES

To demonstrate the effectiveness of the CTQ, we built a scheduling simulator that is a user-space program which takes six

inputs, the scheduling algorithm, the number of processes, the burst time, the arrival time, response time of each process, and the

first time quantum that will be used in the traditional round-robin. The simulator randomly assigns burst times, arrival times,

response times to processes.

To measure the effectiveness, we ran simulations for the proposed algorithm against fixed round-robin algorithm considered on 30

different combinations of n and BT’s, the burst times of the processes varying from 1 to 500 tu. For each set of (n, BT), we ran

different number of processes with different CPU lengths, response times, and arrival times. In this research, the process arrival

was modeled as a Poisson random process. Hence, the inter-arrival times are exponentially distributed. A process arrival generator

was developed to take care of the process of random arrival of different processes to the system. The generator produces the inter-

arrival times utilizing some specific mean (arrival intensity) of the distribution function. We call this set of 30 processes DATA1.

we ran the simulation in three different cases:

i) best response (i.e., the response of process considered to be at the beginning of its execution),

ii) random response (i.e., the response of process considered to be at any time during its execution) and

iii) worst response (i.e., the response of process considered to be at its end of execution).

Figures 1, 2, and 3 present the previous cases respectively. To avoid unnecessary context switches, we ranged the selected TQs

from α up to OSTS. Here in DATA1 OSTS is equal 50 msec and α is equal ½ OSTS. Also to confirm the improvement of our

technique, we assume that the process response time ≤ α as shown in figure 4. In this research we took into account the waiting

time and the turnaround time as shown in figures 5 and 6 respectively.

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (65-73), Month: October-December 2013, Available at: www.researchpublish.com

Page | 71
Research Publish Journals

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

3

4

5

6

7

L
N

(R
E

S
P

O
N

S
E

 T
IM

E
)

NO. of TASKS

Figure 1: DATA1 Best Response Time

 FIXEDRR

 CTQ

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

5

6

7

8

L
N

(R
E

S
P

O
N

S
E

 T
IM

E
)

NO. of TASKS

Figure 2: DATA1 Random Response Time

 FIXEDRR

 CTQ

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

6.0

6.5

7.0

7.5

8.0

8.5

L
N

(R
E

S
P

O
N

S
E

 T
IM

E
)

NO. of TASKS

Figure 3: DATA1 Worst Response Time

 FIXEDRR

 CTQ

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (65-73), Month: October-December 2013, Available at: www.researchpublish.com

Page | 72
Research Publish Journals

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

4

5

6

7

L
N

(R
E

S
P

O
N

S
E

 T
IM

E
)

NO. of TASKS

Figure 4: DATA1 Random Response Time (Response Time)

 FIXEDRR

 CTQ

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

L
N

(
W

A
IT

IN
G

 T
IM

E
)

NO. of TASKS

Figure 5: DATA1 Average Waiting Time

 FIXEDRR

 CTQ

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

6

7

8

L
N

(
T

U
R

N
A

R
O

U
N

D
 T

IM
E

)

NO. of TASKS

Figure 6: DATA1 Average Turnaround Time

 FIXEDRR

 CTQ

International Journal of Computer Science and Information Technology Research (IJCSITR)
Vol. 1, Issue 1, pp: (65-73), Month: October-December 2013, Available at: www.researchpublish.com

Page | 73
Research Publish Journals

REFERENCES

[1]. A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a Fair Queueing Algorithm,” in Proceedings of ACM

SIGCOMM ’89, Austin, TX, Sept. 1989, pp. 1–12.

[2]. A. Harwood and H. Shen, “Using fundamental electrical theory for varying time quantum uni-processor scheduling,” Journal of

Systems Architecture: the EUROMICRO Journal, Volume 47, issue 2, Feb. 2001.

[3]. A. Parekh and R. Gallager, “A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The

Single-Node Case,” IEEE/ACM Transactions on Networking, 1(3), June 1993, pp. 344–357.

[4]. A. Silberschatz, P.B. Galvin, and G. Gagne, “Operating Systems Concepts,” John Wiley and Sons. 6Ed 2005.

[5]. A. Tanenbaum, “Moden Operating Systems,” Second ed., 2001.

[6]. B. Caprita, W.C. Chan, and J. Nieh, “Group Round-Robin: Improving the Fairness and Complexity of Packet Scheduling”,

Technical Report CUCS-018-03, Columbia University, June 2003.

[7]. B. Caprita, W.C. Chan, J. Nieth, C. Stein, and H. Zheng, “Group ratio round-robin: O(1) proportional share scheduling for uni-

processor and multiprocessor systems,” In USENIX Annual Technical Conference, 2005.

[8]. G. Henry, “The Fair Share Scheduler,” AT&T Bell Laboratories Technical Journal, 63(8), Oct. 1984, pp. 1845–1857.

[9]. J. Bennett and H. Zhang, “WFQ: Worst-case Fair Weighted Fair Queueing,” in Proceedings of INFOCOM ’96, San Francisco,

CA, Mar. 1996.

[10]. J. Kay and P. Lauder, “A Fair Share Scheduler,” Communications of the ACM, 31(1), Jan. 1988, pp. 44–55.

[11]. J. Nieh, C. Vaill and, H. Zhong, “Virtual-Time Round-Robin: An O(1) Proportional Share Scheduler,” In Proceedings of the

2001 USENIX Annual Technical Conference, June 2001.

[12]. L. Abeni, G. Lipari, and G. Buttazzo, “Constant bandwidth vs. proportional share resource allocation”, In Proceedings of the

IEEE International Conference on Multimedia Computing and Systems, Florence, Italy, June 1999.

[13]. M. Shreedhar and G. Varghese, “Efficient Fair Queueing Using Deficit Round-Robin,” in Proceedings of ACM SIGCOMM ’95,

4(3), Sept. 1995. PP. 231-242.

[14]. R. Essick, “An Event-Based Fair Share Scheduler,” in Proceedings of the Winter 1990 USENIX Conference, USENIX Berkeley,

CA, USA, Jan. 1990, pp. 147–162.

[15]. Rami J Matarneh, “Self-Adjustment Time Quantum in Round Robin Algorithm Depending on Burst Time of the Now Running

Processes,” American Journal of Applied Sciences, 6(10): 1831-1837 , 2009.

[16]. T. Helmy and A. Dekdouk, “Burst Round Robin: As A Proportional-Share Scheduling Algorithm,” In Proceedings of The fourth

IEEE-GCC Conference on Towards Techno-Industrial Innovations, pp. 424-428, 11-14 November 2007, at the Gulf International

Convention Center, Bahrain.

[17]. Samih M. Mostafa, S. Z. Rida & Safwat H. Hamad. "FINDING TIME QUANTUM OF ROUND ROBIN CPU SCHEDULING

ALGORITHM IN GENERAL COMPUTING SYSTEMS USING INTEGER PROGRAMMING", International journal of

Research and Reviews in Applied Sciences. October 2010.

[18]. Samih M. Mostafa, S. Z. Rida & Safwat H. Hamad. "Improving Scheduling Criteria of Preemptive Processes Scheduled Under

Round Robin Algorithm Using Changeable Time Quantum", Journal of Computer Science & Systems Biology (JCSB). JCSB

/Vol.4.4-04-071(2011).

