Chromatic Number of in-Regular Types of Halin Graphs

T. Nicholas1, Sanma.G.R2

1Associate Professor in Mathematics, St. Jude’s College, Thoothoor – 629176, Kanyakumari District, Tamil Nadu, India
2Assistant professor in Mathematics, Karpagam College of Engineering, Othakalmandapam-641032, Coimbatore District, India

Abstract: A Halin graph \(H \) is the union of a tree \(T \neq K_2 \) with no vertex of degree two and a cycle \(C \) connecting the end-vertices of \(T \) in the cyclic order determined by a plane embedding of \(T \). In this paper, we classify the Halin graphs depending upon whether the tree \(T \) is unicentric or bicentric and investigate the vertex coloring properties of four classes of Halin graphs.

Keywords: In-regular circular Halin graph, in-regular belted circular Halin graph, in-regular elliptical Halin graph, in-regular belted elliptical Halin graph.

I. INTRODUCTION

A Halin graph is a plane graph \(G = T \cup C \) where \(T \neq K_2 \) is a tree with no vertex of degree 2 and \(C \) is a cycle connecting the leaves of \(T \) in the cyclic order determined by the plane embedding of \(T \). Halin Graphs belong to the family of planar 3-connected graphs and possess Hamiltonian properties. They are 1-Hamiltonian, (i.e., they are Hamiltonian) and remain so even after the removal of any single vertex as given in Bondy \cite{1}. In the recent years, many researchers have been studying the coloring \cite{3, 9, 10} and list coloring \cite{4} of Halin graphs. Recently some scholars begin to consider the adjacent vertex acyclic edge coloring of graphs \cite{2}, the adjacent vertex distinguishing edge coloring of planar graphs \cite{5} and Halin graphs \cite{7, 6}. We use the notation \(V(G) \) and \(E(G) \) for the vertex and the edge sets of \(G \) respectively.

In this paper we obtain the chromatic number of different types of Halin graphs depending upon whether it is unicentric or bicentric

A Halin graph \(G = T \cup C \) in which the tree \(T \) has one vertex as its center, the number of levels \(\ell \), the degree of inner vertices \(D \) and outer vertices obviously having degree three is called the in-regular circular Halin graph and denoted by \(H_1(\ell, D) \)

Example:\(H_1(2,5) \)

The vertex set of \(H_1(\ell, D) \) can be divided into two disjoint sets called inner nodes and outer nodes. The outer nodes are precisely the leaf nodes and inner nodes are the non-leaf nodes of \(T \). It is noted that only the outer nodes are in the cycle \(C \). The Halin graph in which the tree \(T \) has a star structure (i.e. only one non-leaf node) is called a wheel.
Let $H_1(\ell', D)$ be a Halin graph and w be an inner node which is adjacent to only one other inner node. Define $C(w)$ as the set of all outer nodes adjacent to the inner node w. The sub graph of H induced by $w \cup C(w)$ is referred as fan and w is called center of this fan.

For an in-regular circular Halin graph $H_1(\ell', D)$, some of the interesting aspects are:

1) The total number of vertices in $H_1(\ell', D)$ is

$$1 + D + D(D-1)^{\ell} + D(D-1)^{\ell+1} + \ldots + D(D-1)^{\ell-1}$$

2) Every $H_1(\ell', D)$ is Hamiltonian.

3) The total number of leaves in $H_1(\ell', D)$ is $D(D-1)^{\ell-1}$.

4) The total number of fans in $H_1(\ell', D)$ is $D(D-1)^{\ell-2}$.

A proper vertex coloring of a graph G is an assignment of colors to the vertices of G one color to each vertex so that adjacent vertices are colored differently. The minimum number of colors required for the proper vertex coloring of the graph G is called chromatic number, denoted as $\chi(G)$.

II. MAIN RESULTS

A. Vertex colorings in in-regular circular Halin Graph:

Theorem 2.1

In $H_1(\ell', D)$, $D > 2$ with level $\ell' = 1$, the chromatic number $\chi(H_1(\ell', D)) = \begin{cases} 4 & \text{if } D \text{ is odd} \\ 3 & \text{if } D \text{ is even} \end{cases}$

Proof.

In this case, $H_1(\ell', D) = a$ wheel. The result follows.

Theorem 2.2

In $H_1(\ell', D)$ where $D > 2$ with level $\ell' \geq 2$, the chromatic number $\chi(H_1(\ell', D)) = 3$.

Proof.

$H_1(\ell', D)$ is an in-regular circular Halin graph with level $\ell' \geq 2$ and degree $D > 2$ having one center u, say. Let the level ℓ of $H_1(\ell', D)$ be n and degree be $D = m$. Since it is unicentric, fix the color c_1 on the central vertex u where $\ell = 0$. The m vertices at level $\ell = 1$ are independent and are adjacent to u. Hence these m vertices receive a color c_2. If $\ell = k < n$, then the $m(m-1)^{k-1}$ vertices on the level $\ell = k$ are independent which can all be coloured by c_1 or c_2, whichever color is held by the vertices in the level $k-2$. Now, for any vertex w at the $(n-1)^{th}$ level, the fan induced by the vertices $w \cup C(w)$ requires three colors, that is a color c_3 in addition to the two colors c_1 and c_2 already used. In this process, the vertices in the cycle C are alternatively colored with two colors other than that color assigned to w. Since the number of vertices $m(m-1)^{n-1}$ is even for any m, these two colors will exhaust all the leaf nodes on the cycle. This gives $\chi(H_1(\ell', D)) \leq 3$. Since $H_1(\ell', D)$ has a triangle as an induced sub graph, $\chi(H_1(\ell', D)) \geq 3$. Hence the result follows.

A Halin graph $H_1(\ell', D)$ in which the vertices of each level $0 < \ell < n$ are connected by a cycle, contributing degree 2 to each inner vertex such that the resulting graph maintains the inner degree D is called in-regular belted circular Halin graph and denoted by $BH_1(\ell', D)$.

Example: $BH_1(2, 5)$
The in-regular belted circular Halin graph $BH_1(\ell, D)$ obviously holds the following interesting properties.

1) The total number of vertices in $BH_1(\ell, D)$, $D > 3$ is
 \[1 + D + D(D - 3) + D(D - 3)^2 + \ldots + D(D - 3)^{\ell - 1}\] for $\ell \geq 1$
 1 for $\ell = 0$

2) The total number of leaves in $BH_1(\ell, D)$, $D > 3$ is $D(D - 3)^{\ell - 1}$.

3) The total number of fans in $BH_1(\ell, D)$, $D > 3$ is $D(D - 3)^{\ell - 2}$.

4) $BH_1(1, D)$ is same as $H_1(1, D)$, where $D > 2$.

Theorem 2.3

$BH_1(\ell, 3)$, where $\ell \geq 2$ does not exist.

Proof.

It is obvious that $BH_1(1, 3) = H_1(1, 3) = Wheel W_3$. If $\ell \geq 2$, then in the in-regular belted circular Halin graph with uni-center, every vertex in any level k, where $0 < k < \ell$, has degree 4 which is a contradiction since $D = 3$.

Remark:

The graph $BH_1(\ell, D)$, where D is of odd and $D > 2$ with level $\ell = 1$ is a wheel on odd cycle for which the chromatic number $\chi(BH_1(\ell, D)) = 4$. In the case when D is even, $\chi(BH_1(\ell, D)) = 3$.

Theorem 2.4

For the graph $BH_1(\ell, D)$ where D is of even degree, $D > 2$ with level $\ell > 1$, the chromatic number $\chi(BH_1(\ell, D)) = 3$.

Proof.

Obviously $\chi(BH_1(\ell, D)) \geq 3$ since it has a triangle as an induced sub graph. Fix a color c_1 for the central vertex u. The vertices at the first level can be alternatively colored with c_2 and c_3. Each inner vertex v emanates exactly $D - 3$ vertices which are belted (that is, which lie in a cycle on $D(D - 3)^k$ vertices for some k), where $D - 3$ is odd. The vertex v, together with the $(D - 3)$ vertices adjacent to v, induces a fan. To achieve a 3-coloring, the $(D - 3)$ vertices in any such fan in the inner cycle must have colors in one of the following schemes:

a) $c_1, c_2, c_1, c_2, \ldots, c_1, c_2, c_1$.

b) $c_2, c_3, c_2, c_3, \ldots, c_2, c_3, c_2$.

c) $c_3, c_1, c_3, c_1, \ldots, c_3, c_1, c_3$.

Let $w_1, w_2, \ldots, w_{D-3}$ be the $(D - 3)$ vertices of the fan emanating from (adjacent to) v.

Case a.1. v is a vertex in Scheme (a).

If v has the color c_1, then $w_1, w_2, \ldots, w_{D-3}$ are colored by Scheme (b).

If v has the color c_2, then $w_1, w_2, \ldots, w_{D-3}$ are colored by Scheme (c).

Case b.1. v is a vertex in Scheme (b).

If v has the color c_2, then $w_1, w_2, \ldots, w_{D-3}$ are colored by Scheme (c).

If v has the color c_3, then $w_1, w_2, \ldots, w_{D-3}$ are colored by Scheme (a).

Case c.1. v is a vertex in Scheme (c).

If v has the color c_3, then $w_1, w_2, \ldots, w_{D-3}$ are colored by Scheme (a).

If v has the color c_1, then $w_1, w_2, \ldots, w_{D-3}$ are colored by Scheme (b).

This color scheme can be extended to all the levels of the graph and a 3-coloring can be achieved.

Theorem 2.5

In $BH_1(\ell, D)$ where D is of odd degree, $D \geq 5$ with level $\ell > 1$, chromatic number $\chi(BH_1(\ell, D)) = 4$.

Proof:
Obviously $\chi(BH_2(\ell', D)) \geq 4$ since the union of the central vertex and the D vertices at level $\ell' = 1$ induce a wheel on odd cycle. Let c_1, c_2, c_3 and c_4 be any four colors. Fix c_1 for the central vertex u. The vertices at the first level can be alternatively colored with c_2 and c_3 and the D^{th} vertex with c_4, since the inner cycle at level $\ell' = 1$ is of odd length. Each inner vertex v emanates exactly $D-3$ vertices which are belted (that is, which lie in a cycle on $D(D-3)^k$ for some k), where $D-3$ is even. The vertex v, together with the $(D-3)$ vertices adjacent to v, induces a fan. To achieve a 4-coloring, the $(D-3)$ vertices in any such fan in the inner cycle can be colored by the scheme as in Theorem 2.4, but with three colors.

Hence 4-coloring can be achieved

B. Vertex colorings in in-regular Elliptical Halin Graph:

A Halin graph in which the tree has two vertices as its centers, ℓ' the number of levels, D the degree of inner vertices and the outer vertices having degree three is called an in-regular elliptical Halin graph and denoted by $H_2(\ell', D)$.

Example: $H_2(2,5)$

The in-regular elliptical Halin graph $H_2(\ell', D)$ has the following properties.

1) The total number of vertices in $H_2(\ell', D)$ is
 $$\begin{cases}
 2[1+(D-1)+(D-1)^2+(D-1)^3+\ldots+(D-1)^{\ell'}] & \text{for } \ell' \geq 1 \\
 2 & \text{for } \ell'=0
 \end{cases}$$

2) Every $H_2(\ell', D)$ is Hamiltonian.

3) The total number of leaves in $H_2(\ell', D)$ is $2(D-1)^{\ell'}$.

4) The total number of fans in $H_2(\ell', D)$ is $2(D-1)^{\ell'-1}$.

Theorem 3.1

In $H_2(\ell', D)$ where $D>2$ with level $\ell' \geq 1$, the chromatic number $\chi(H_2(\ell', D)) = 3$.

Proof.

Let $H_2(\ell', D)$ be an in-regular elliptical Halin graph with $\ell' \geq 1$, $D>2$. Fix the colors c_1 and c_2 to the two centers u and v respectively of the underlying tree of the graph. Let A be the sub tree rooted at u which has level ℓ'. Consider the sub tree $T_1 = A - uv$. T_1, being a tree, is 2-colorable, say with colors c_1 and c_2 up to the level $\ell'-1$. Similarly, $T_2 = B - uv$ is also 2-colorable, say with the same colors c_1 and c_2 up to the level $\ell'-1$, where B is the sub tree rooted at v having level ℓ'. Then $T = T_1 \cup T_2 \cup uv$. All the leaf nodes of T lie on the cycle C. Since every inner vertex at level $\ell'-1$, together with the $V(C)$, induces a fan which requires an additional color, say c_3, in addition to c_1 and c_2. Hence $\chi(H_2(\ell', D)) \leq 3$. Since $H_2(\ell', D)$ has an odd cycle as an induced sub graph, $\chi(H_2(\ell', D)) \geq 3$. Hence the result follows.

A Halin graph $H_2(\ell', D)$ in which the vertices of each level $0 < \ell' < n$ are connected by a cycle, contributing degree 2 to each inner vertex such that the resulting graph maintains the inner degree D is called in-regular belted elliptical Halin graph and denoted by $BH_2(\ell', D)$.
Example: BH₂(2,5)

For an in-regular belted elliptical Halin graph, BH₂(𝓁, D), some of the interesting aspects are:
1) For 𝓁 >2 and D =3, BH₂(𝓁, D) does not exist.
2) The total number of vertices in BH₂(𝓁, D), D >3 is
 \[2[1+(D-1)+\ldots+(D-1)(D-3)^{\ell-1}]\text{ for } \ell \geq 1\]
 \[2 \text{ for } \ell =0\]
3) Every BH₂(𝓁, D) is Hamiltonian.
4) The total number of leaves in BH₂(𝓁, D) is 2(D-1)(D-3)𝓁-1.
5) The total number of fans in BH₂(𝓁, D) is 2(D-1)(D-3)𝓁-2.

Theorem 3.2

BH₂(𝓁, D), where D = 3 with level 𝓁≥ 2, does not exist.

Proof:

Let u and v be the centers of BH₂(𝓁, D). Let x ≠ u or v be any inner vertex. Since the degree of any inner vertex other than the center is at least 4 in any belted graph BH₂(𝓁, D), it concludes that BH₂(𝓁, D) does not exist.

Theorem 3.3

In BH₂(𝓁, D), where D >3 with level 𝓁= 1, the chromatic number χ(BH₂(𝓁, D)) = 3.

Proof:

Let u and v be the centers of BH₂(𝓁, D). Assign the colors c₁ and c₂ to vertices u and v respectively. Since 𝓁= 1, the center u is adjacent to D-1 outer vertices on the outer cycle which can be alternately colored with c₂ and c₁ in order. Similarly, the other center v is also adjacent to D-1 outer vertices on the outer cycle which are colored alternately with c₁ and c₃. Since there are only 2D-2 vertices on the outer cycle, the 3-coloring on the cycle is proper, which proves the result.

Theorem 3.4

In BH₂(𝓁, D) where D >3 with level 𝓁>1, the chromatic number χ(BH₂(𝓁, D))=3.

Proof:

Extending the 3-coloring of the vertices at level 𝓁=1 obtained in Theorem 3.3, to the subsequent levels, a 3-coloring is achieved for the vertices of the graph BH₂(𝓁, D). Hence χ(BH₂(𝓁, D)) = 3.

REFERENCES

