Decomposability of Normal Projective Curvature Tensor in Finsler Spaces

Fahmi Yaseen Abdo Qasem

Department of Mathematics, Faculty of Education-Aden, University of Aden, Yemen Khormaksar, Aden, Yemen

Abstract: The decomposition of curvature tensor field was studied by K.Takano [4]. The decomposability of curvature tensor in Finsler manifold was studied by P.N, Pandey [2].

The purpose of the present paper is to decompose the normal projective curvature tensor N_{jkh}^{i} in recurrent Finsler space and study the properties of conformal decomposition tensor.

Keywords: Finsler space, normal projective curvature tensor, recurrent Finsler space.

1. INTRODUCTION

We consider an n – dimensional Finsler space F_n in which the Normal projective curvature tensor defined by [1]

(1.1)
$$N^{i}_{jkh} = H^{i}_{jkh} - \frac{1}{n+1} y^{i} \dot{\partial}_{j} H^{r}_{rkh}$$
.

Contracting the indices *i* and *h* in equation (1.1) and using the fact that the tensor H_{rkh}^r is positively homogeneous of degree zero in y^i , we have

$$(1.2) N^r_{rkh} = H^r_{rkh} \ .$$

Transvecting (1.1) by y^{j} and using $H_{ikh}^{i} y^{j} = H_{kh}^{i}$, we get

(1.3)
$$N_{jkh}^i y^j = H_{kh}^i$$
.

The normal projective curvature tensor is skew-symmetric in its last two lower indices ,i.e.

$$(1.4) N^i_{jkh} = -N^i_{jhk} .$$

The normal projective curvature tensor satisfies the identities

(1.5)
$$N_{jkh}^{i} + N_{khj}^{i} + N_{hjk}^{i} = 0 .$$

(1.6)
$$\lambda_n N_{ikh}^i + \lambda_k N_{ihn}^i + \lambda_h N_{ink}^i = 0.$$

Contracting the indices i and h in equation (1.1), we get

(1.7)
$$N_{jk} = H_{jk} - \frac{1}{n+1} y^i \dot{\partial}_j H_{rki}^r .$$

Shalini Dikshit [1] defined a Finsler space in which the normal projective curvature tensor is recurrent, i.e.

(1.8)
$$\mathcal{B}_n N^i_{jkh} = \lambda_n N^i_{jkh} , N^i_{jkh} \neq 0 .$$

She also defined a Finsler space in which the normal projective curvature tensor is birecurrent ,i.e.

(1.9)
$$\mathcal{B}_m \mathcal{B}_n N^i_{jkh} = a_{mn} N^i_{jkh} .$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

Vol. 3, Issue 2, pp: (151-154), Month: October 2015 - March 2016, Available at: www.researchpublish.com

2. DECOMPOSITION OF NORMAL PROJECTIVE CURVATURE TENSOR IN FINSLER SPACE

Let us consider the normal projective tensor N_{ikh}^{i} in the form

(2.1)
$$N_{jkh}^i = X_j^i y_{kh}$$
.

where X_j^i is non-zero tensor and y_{kh} is skew symmetric decomposition tensor.

The space equipped with such decomposition of normal projective curvature tensor in recurrent Finsler space and denote it by $R - F_n$.

Differentiating (2.1) covariantly with respect to x^n in the sense of Berwald, we get

(2.2)
$$\mathcal{B}_n N_{jkh}^i = \mathcal{B}_n X_j^i y_{kh} + X_j^i \mathcal{B}_n y_{kh} .$$

Using (1.8) in (2.2), we get

(2.3)
$$\lambda_n N_{jkh}^i = \mu_n X_j^i y_{kh} + X_j^i \mathcal{B}_n y_{kh},$$

where

(2.4)
$$\mathcal{B}_n X_j^i = \mu_n X_j^i .$$

From equation (2.1) and equation (2.3), we get

$$\lambda_n X_j^i y_{kh} = \mu_n X_j^i y_{kh} + X_j^i \mathcal{B}_n y_{kh} \,,$$

or

(2.5)
$$\mathcal{B}_n y_{kh} = (\lambda_n - \mu_n) y_{kh} .$$

Let us assume that $\lambda_n \neq \mu_n$, the equation (2.5) may be written as

$$(2.6) \qquad \qquad \mathcal{B}_n \, y_{kh} = v_n \, y_{kh} \; .$$

where

(2.7)
$$v_n = (\lambda_n - \mu_n).$$

If the above equation (2.6) is true then (2.3) yield

$$\lambda_n N^i_{jkh} = \mu_n X^i_j y_{kh} + X^i_j v_n y_{kh} \ .$$

or

$$\lambda_n X_j^i y_{kh} = \mu_n X_j^i y_{kh} + X_j^i v_n y_{kh}$$

or

(2.8)
$$\lambda_n y_{kh} = (\mu_n + \nu_n) y_{kh} .$$

Thus, we have

Theorem2.1. In $NPR - F_n$, the necessary and sufficient condition for the decomposition tensor to be recurrent is that the recurrence vector λ_n is not equal to recurrence vector μ_n .

Let us assume that the recurrence vector λ_n is equal to recurrence vector μ_n such that

$$(2.9) \qquad \qquad \lambda_n = \mu_n \; .$$

In view of (2.9) and (2.6) immediately reduces to

$$(2.10) \qquad \qquad \mathcal{B}_n \, y_{kh} = 0 \; .$$

Using (2.10) in (2.2), we have

$$\mathcal{B}_n N^i_{jkh} = \mathcal{B}_n X^i_j y_{kh} \; .$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

Vol. 3, Issue 2, pp: (151-154), Month: October 2015 - March 2016, Available at: www.researchpublish.com

or

(2.11)
$$\mathcal{B}_n N^i_{jkh} = \mu_n X^i_j y_{kh} .$$

.

Adding the expressions obtained by cyclic change of (2.11) with respect to the indices k, h and m, we have

(2.12)
$$\mathcal{B}_n N^i_{jkh} + \mathcal{B}_k N^i_{jhn} + \mathcal{B}_h N^i_{jnk} = X^i_j (\mu_n y_{kh} + \mu_k y_{hn} + \mu_h y_{nk}).$$

In view of (1.6), equation (2.12) reduces to

(2.13)
$$X_j^{\iota}(\mu_n y_{kh} + \mu_k y_{hn} + \mu_h y_{nk}) = 0.$$

Since X_i^i is non-zero tensor it implies

$$(\mu_n \, y_{kh} + \mu_k \, y_{hn} + \mu_h \, y_{nk}) = 0 \; .$$

or

(2.14)
$$(\lambda_n y_{kh} + \lambda_k y_{hn} + \lambda_h y_{nk}) = 0.$$

Theorem2.2. In NPR – F_n , under the decomposition (2.1), if the vector λ_n is equal to μ_n , the decomposition tensor satisfies the identity (2.14).

Differentiating (2.11) covariantly with respect to x^m in the sense of Berwald and using (2.10), we get

(2.15)
$$\mathcal{B}_m \,\mathcal{B}_n N^i_{jkh} = \mathcal{B}_m \left(\mu_n X^i_j \right) y_{kh} = \left[(\mathcal{B}_m \mu_n) X^i_j + \mu_n (\mathcal{B}_m X^i_j) \right] y_{kh} \,.$$

In view of (2.4) the above equation may be written as

(2.16)
$$\mathcal{B}_m \,\mathcal{B}_n N_{jkh}^i = (\mathcal{B}_m \mu_n + \mu_n \mu_m) X_j^i \, y_{kh} \, .$$

Using (1.9) and (2.1), we get

(2.17)
$$a_{mn}X_{j}^{i}y_{kh} = (\mathcal{B}_{m}\mu_{n} + \mu_{n}\mu_{m})X_{j}^{i}y_{kh}$$

From (2.16) and (2.17), we have

$$(2.18) a_{mn} = \mathcal{B}_m \mu_n + \mu_n \mu_m \,.$$

Thus, we conclude that

Theorem2.3. In NPR – F_n , under the decomposition (2.1), if the recurrence vector λ_n is equal to recurrence vector μ_n , for which recurrence vector field μ_n satisfies the condition $(\mathcal{B}_m \mu_n + \mu_n \mu_m) \neq 0$.

Interchanging the indices m and n in (2.16) and subtracting the equation which obtained to (2.16), we have

(2.19)
$$\mathcal{B}_n \mathcal{B}_m N^i_{jkh} - \mathcal{B}_m \mathcal{B}_n N^i_{jkh} = (\mathcal{B}_n \mu_m - \mathcal{B}_m \mu_n) X^i_j y_{kh}.$$

Accordingly we state

Corollary2.1. In NPR – F_n , under the decomposition (2.1), if the recurrence vector λ_n is equal to recurrence vector μ_n , the normal projective curvature tensor satisfies the identity (2.19).

Differentiating (2.6) covariantly with respect to x^m in the sense of Berwald, we get

(2.20)
$$\mathcal{B}_m \mathcal{B}_n y_{kh} = (\mathcal{B}_m v_n) y_{kh} + v_n \mathcal{B}_m y_{kh}$$

$$= (\mathcal{B}_m \lambda_n - \mathcal{B}_m \mu_n) y_{kh} + (\lambda_n - \mu_n) \mathcal{B}_m y_{kh}.$$

In view of (2.6), the equation (2.20) may be written as

(2.21)
$$\mathcal{B}_m \mathcal{B}_n y_{kh} = (\mathcal{B}_m \lambda_n - \mathcal{B}_m \mu_n) y_{kh} + (\lambda_n - \mu_n) v_m y_{kh}.$$

or

(2.22)
$$\mathcal{B}_m \mathcal{B}_n y_{kh} = (\mathcal{B}_m \lambda_n - \mathcal{B}_m \mu_n) y_{kh} + (\lambda_n - \mu_n) (\lambda_m - \mu_m) y_{kh}.$$

or

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

Vol. 3, Issue 2, pp: (151-154), Month: October 2015 - March 2016, Available at: www.researchpublish.com

(2.23)
$$\mathcal{B}_m \mathcal{B}_n y_{kh} = (\mathcal{B}_m \lambda_n - \mathcal{B}_m \mu_n + \lambda_n \lambda_m - \lambda_n \mu_m)$$

$$-\mu_n \lambda_m + \mu_n \mu_m y_{kh}$$

Theorem2.4. In $NPR - F_n$, under the decomposition (2.1), the second order covariant derivative of decomposition tensor y_{kh} satisfies the relation(2.23).

In view of (2.9), equation (2.23) immediately reduces to

 $(2.24) \qquad \qquad \mathcal{B}_m \, \mathcal{B}_n \, y_{kh} = 0 \; .$

Corollary2.2. In *NPR* – F_n , the second order covariant derivative of decomposition tensor y_{kh} vanish, if the vector λ_n is equal to μ_n .

Differentiating (2.4) covariantly with respect to x^m in the sense of Berwald, we get

(2.25)
$$\mathcal{B}_m \,\mathcal{B}_n X_j^i = (\mathcal{B}_m \mu_n) X_j^i + \mu_n \mathcal{B}_m X_j^i \,.$$

Using equation (2.4) in equation (2.25), we get

(2.26)
$$\mathcal{B}_m \mathcal{B}_n X_j^i = (\mathcal{B}_m \mu_n) X_j^i + \mu_n \mu_m X_j^i = (\mathcal{B}_m \mu_n + \mu_n \mu_m) X_j^i.$$

Theorem2.5. In $NPR - F_n$, under the decomposition (2.1), the second order covariant derivative of the tensor X_j^i satisfies the relation(2.26).

REFERENCES

- [1] Dikshit, S.: Certain types of recurrences in Finsler spaces, D. phil. Thesis, University of Allahabad, India, 1992.
- [2] Pandey, P.N.: On decomposability of curvature tensor of a Finsler manifold Acta Mathmatica, Academia Scieniarum Hungaricae , Tomus 38(1-4) ,1981, 109-116.
- [3] Rund, H.: The differential geometry of Finsler space, Springerverlag, Berlin Gottingen-Heidelberg, (1959), 2nd edit. (in Russian), Nauka, (Moscow), (1981).
- [4] Takano, K: Affine motion in non Riemannian K^{*}-space I, and II(with M. Okumura), IV and V, Tensor, N.S., 11, 137-143, 161-173, 174-181, 245-253, 270-278.
- [5] Thakur, M. Mishra.C.K and Lodhi, G.: Decomposability of projective curvature tensor in recurrent Finsler space($WR F_n$), International J. of computer Applications, V(100), No.19, 2014, 32-34.