Generalized Contraction-Type Mappings on Multiplicative – Metric Space

1Kamal Kumar, 2Nisha Sharma, 3Mamta Rani, 4Rajeev Jha

1Department of Mathematics, Pt. JLN Govt. College Faridabad, Sunrise University Alwar
2Department of Mathematics, Manav Rachna International University Faridabad
3Department of Mathematics, Pt. JLN Govt. College Faridabad
4Department of Mathematics, Teerthankar Mahaveer University Moradabad(UP)

Abstract: In this paper, we generalized some unique fixed point theorems in the context of multiplicative metric spaces. We note that some fixed point theorems can be deduced in multiplicative metric space by using the established results. we used the concept of multiplicative contraction mapping and proved some fixed point theorems of such mappings on complete multiplicative metric spaces.

MSC: 54E40, 54E35, 54H25.

Keywords: Complex-valued metric space, Multi-valued mappings, Contraction mappings, Common fixed point.

1. INTRODUCTION

1.1. The notion of complex-valued metric spaces was introduced by Azam et al. [2]. Ozavsar and Cevikel [4] initiated the concept of the multiplicative metric space in such a way that the usual triangular inequality is replaced by “Multiplicative triangle inequality \(d(x, y) \leq d(x, z) \cdot d(z, y)\) for all \(x, y, z \in X\)”. It is well known fact that the mathematical results regarding fixed points of contraction-type mappings are very useful for determining the existence and uniqueness of solutions to various mathematical models. The study of fixed points of mappings satisfying certain contraction conditions has many applications and has been at the centre of various research activities. we introduce concept of multiplicative contraction mapping and prove some fixed point theorems of multiplicative contraction mappings on multiplicative metric spaces. The study of fixed points of mappings satisfying certain contraction conditions has many applications and has been at the centre of various research activities. The theory of fixed points has been developed, regarding the results to finding the fixed points over the last 45 years. It is well known that the set of positive real numbers \(\mathbb{R}^+\) is not complete according to the usual metric. To emphasize the importance of this study, we should first note that \(\mathbb{R}^+\) is a complete multiplicative metric space with respect to the multiplicative metric.

Some important definitions are as follows:

Definition 1.2. Let \(X\) be a nonempty set. Multiplicative metric [4] is a mapping \(d : X \times X \to \mathbb{R}_+\) satisfying the following conditions:

\[(m1)\ d(x, y) \geq 1 \text{ for all } x, y \in X \text{ and } d(x, y) = 1 \text{ if and only if } x = y,\]
\[(m2)\ d(x, y) = d(y, x) \text{ for all } x, y \in X,\]
\[(m3)\ d(x, z) \leq d(x, y) \cdot d(y, z) \text{ for all } x, y, z \in X \text{ (multiplicative triangle inequality)}.\]

2. MULTIPLICATIVE METRIC TOPOLOGY

We shall begin this section with the following examples, which will be used throughout the paper.

Definition 1.3.[4]: Let \((X, d)\) be a multiplicative metric space, \(x \in X\) and \(\varepsilon > 1\). We now define a set \(B_\varepsilon(x) = \{y \in X \mid d(x, y) < \varepsilon\}\), which is called multiplicative open ball of radius \(\varepsilon\) with center \(x\). Similarly, one can describe multiplicative closed ball as \(B_\varepsilon(x) = \{y \in X \mid d(x, y) \leq \varepsilon\}\).
Definition 1.4.[4]: Let \((X, d)\) be a multiplicative metric space and \(A \subset X\). Then we call \(x \in A\) a multiplicative interior point of \(A\) if there exists an \(\varepsilon > 1\) such that \(B_{\varepsilon}(x) \subset A\). The collection of all interior points of \(A\) is called multiplicative interior of \(A\) and denoted by \(\text{int}(A)\).

Definition 1.5. [4]: Let \((X, d)\) be a multiplicative metric space and \(A \subset X\). If every point of \(A\) is a multiplicative interior point of \(A\), i.e., \(A = \text{int}(A)\), then \(A\) is called a multiplicative open set.

Lemma 1.6. Let \((X, d)\) be a multiplicative metric space. Each multiplicative open ball of \(X\) is a multiplicative open set.

Proof. Let \(x \in X\) and \(B_\varepsilon(x)\) be a multiplicative open ball. For \(y \in B_\varepsilon(x)\), if we let \(\delta = \frac{\varepsilon}{d(x, y)}\) and \(z \in B_\delta(y)\), then \(d(y, z) < \frac{\varepsilon}{d(x, y)}\) from which we conclude that \(d(x, z) < d(x, y) \cdot d(y, z) < \varepsilon\).

This shows that \(z \in B_\varepsilon(x)\), which means that \(B_\varepsilon(y) \subset B_\varepsilon(x)\) i.e. \(y\) is interior point of \(B_\varepsilon(x)\). Thus \(B_\varepsilon(x)\) is multiplicative open set.

Lemma 1.7. The intersection of any finite family of multiplicative open sets is also a multiplicative open set.

Proof. Let \(B_1\) and \(B_2\) be two multiplicative open sets and \(y \in B_1 \cap B_2\). Then there are \(\delta_1, \delta_2 > 1\) such that \(B_{\delta_1}(y) \subset B_1\) and \(B_{\delta_2}(y) \subset B_2\). Letting \(\delta\) be the smaller of \(\delta_1\) and \(\delta_2\), we conclude that \(B_\delta(y) \subset B_1 \cap B_2\). Hence the intersection of any finite family of multiplicative open sets is a multiplicative open set.

Definition 1.8. [4] Let \((X, d)\) be a multiplicative metric space. A point \(x \in X\) is said to be multiplicative limit point of \(S \subset X\) if and only if \((B_\varepsilon(x) \setminus \{x\}) \cap S \neq \emptyset\) for every \(\varepsilon > 1\). The set of all multiplicative limit points of the set \(S\) is denoted by \(S'\).

Definition 1.9. [4] Let \((X, d)\) be a multiplicative metric space. We call a set \(S \subset X\) multiplicative closed in \((X, d)\) if \(S\) contains all of its multiplicative limit points.

Definition 1.10.[4]: Let \((X, d)\) be a multiplicative metric space. \(\{x_n\}\) be a sequence in \(X\) and \(x \in X\). If for every multiplicative open ball \(B_\varepsilon(x)\), there exists a natural number \(N\) such that \(n \geq N \Rightarrow x_n \in B_\varepsilon(x)\), then the sequence \(\{x_n\}\) is said to be multiplicative convergent to \(x\), denoted by \(x_n \to x\) \((n \to \infty)\).

Lemma 1.11. [4] Let \((X, d)\) be a multiplicative metric space, \(\{x_n\}\) be a sequence in \(X\) and \(x \in X\). Then \(x_n \to x\) \((n \to \infty)\) if and only if \(d(x_n, x) \to 1\) \((n \to \infty)\).

Proof. Suppose that the sequence \(\{x_n\}\) is multiplicative convergent to \(x\). That is, for every \(\varepsilon > 1\), there is a natural number \(N\) such that \(d(x_n, x) < \varepsilon\) whenever \(n \geq N\). Thus we have the following inequality

\[
1/\varepsilon < d(x_n, x) < 1 \cdot \varepsilon
\]

for all \(n \geq N\). This means \(d(x_n, x) < \varepsilon\) for all \(n \geq N\), which implies that the sequence \(d(x_n, x)\) is multiplicative convergent to \(1\). It is clear to verify the converse.

Lemma 1.12. [9] Let \((X, d)\) be a multiplicative metric space, \(\{x_n\}\) be a sequence in \(X\). If the sequence \(\{x_n\}\) is multiplicative convergent, then the multiplicative limit point is unique.

Proof. Let \(x, y \in X\) such that \(x_n \to x\) and \(y_n \to y\) \((n \to \infty)\). That is, for every \(\varepsilon > 1\), there exists \(N\) such that, for all \(n \geq N\), we have \(d(x_n, x) < \sqrt{\varepsilon}\) and \(d(y_n, y) < \sqrt{\varepsilon}\). Then we have \(d(x, y) \leq d(x_n, x) \cdot d(y_n, y) < \varepsilon\).

Since \(\varepsilon\) is arbitrary, \(d(x, y) = 1\). This says \(x = y\).

Theorem 1.13. [9] Let \((X, d_X)\) and \((Y, d_Y)\) be two multiplicative metric spaces, \(f : X \to Y\) be a mapping and \(\{x_n\}\) be any sequence in \(X\). Then \(f\) is multiplicative continuous at the point \(x \in X\) if and only if \(f(x_n) \to f(x)\) for every sequence \(\{x_n\}\) with \(x_n \to x\) \((n \to \infty)\).

Proof. Suppose that \(f\) is multiplicative continuous at the point \(x\) and \(x_n \to x\). From the multiplicative continuity of \(f\), we have that, for every \(\varepsilon > 1\), there exists \(\delta > 1\) such that

\[
f(B_\delta(x)) \subset B_{\varepsilon}(f(x)).
\]

Since \(x_n \to x\) \((n \to \infty)\), there exists \(N\) such that \(n \geq N\) implies \(x_n \in B_\delta(x)\). By virtue of the above inclusion, then \(f(x_n) \in B_\varepsilon(f(x))\) and hence \(f(x_n) \to f(x)\) \((n \to \infty)\).

Conversely, assume that \(f\) is not multiplicative continuous at \(x\). That is, there exists an \(\varepsilon > 1\) such that, for each \(\delta > 1\), we have \(x' \in X\) with \(d_X(x', x) < \delta\) but

\[
d_Y(f(x'), f(x)) \geq \varepsilon.
\]
Now, take any sequence of real numbers (δₙ) such that δₙ → 1 and δₙ > 1 for each n. For each n, select x' that satisfies the equation (1.1) and call this xₙ'. It is clear that xₙ' → x, but f(xₙ') is not multiplicative convergent to f(x). Hence we see that if f is not multiplicative continuous, then not every sequence {xₙ} with xₙ → x will yield a sequence f(xₙ) → f(x). Taking the contrapositive of this statement demonstrates that the condition is sufficient.

Similarly, we can prove the following theorem.

Theorem 1.14. Let (X, d) be a multiplicative metric space and {xₙ} be a sequence in X. The sequence is multiplicative convergent, then it is a multiplicative Cauchy sequence.

Proof. Let x ∈ X such that xₙ → x. Hence we have that for any ε > 1, there exist a natural number N such that d(xₙ, x) < √ε and d(xₙ₋₁, x) < √ε for all n, m ≥ N.

By the multiplicative triangle inequality, we get

\[d(xₙ, xₘ) ≤ d(xₙ, x) \cdot d(x, xₘ) < √ε \cdot √ε = ε, \]

which implies {xₙ} is a multiplicative Cauchy sequence.

Theorem 1.15. (Multiplicative characterization of supremum) Let A be a nonempty subset of \(\mathbb{R}_+ \). Then s = sup A if and only if

(i) a ≤ s for all a ∈ A

(ii) there exists at least a point a ∈ A such that \(|s/a| < ε \) for all ε > 1.

Proof. Let s = sup A. Then from the definition of supremum, the condition (1) is trivial. To prove the condition (1), assume there is an ε > 1 such that there no elements a ∈ A such that \(|s/a| < ε \). If this is the case, then s/ε is also an upper bound for the set A. But this is impossible, since s is the smallest upper bound for A.

To prove the converse, assume that the number s satisfies the conditions (i) and (ii). By the condition (i), s is an upper bound for the set A. If s ≠ sup A, then s > sup A and ε = s / sup A > 1. By the condition (ii), there exists at least a number a ∈ A such that \(|s/a| < ε \). By the definition of the number ε, this means that a > sup A. This is impossible, hence s = sup A.

Theorem 1.16.[9] Let \{xₙ\} and \{yₙ\} be multiplicative Cauchy sequences in a multiplicative metric space (X, d). The sequence {d(xₙ, yₙ)} is also a multiplicative Cauchy sequence in the multiplicative metric space \((\mathbb{R}_+, d^*)\).

Proof. From the multiplicative reverse triangle inequality, we have

\[
d^*(d(xₙ, yₙ), d(xₘ, yₘ)) = \left| \frac{d(xₙ, yₙ)}{d(xₘ, yₘ)} \right| \leq \frac{d(xₙ, yₙ)xₘ, yₘ)}{d(xₙ, yₙ)xₘ, yₘ)} \leq d(xₙ, xₘ) \cdot d(yₙ, yₘ).
\]

Since \{xₙ\} and \{yₙ\} are multiplicative Cauchy sequences, for any ε > 1, there exists N ∈ N such that d(xₙ, xₘ) < √ε and d(yₙ, yₘ) < √ε for all n, m ≥ N. This implies \(d^* (d(xₙ, yₙ), d(xₘ, yₘ)) < ε \) for all n, m ≥ N, which says \{d(xₙ, yₙ)\} is a multiplicative Cauchy sequence.

3. MAIN RESULT

Theorem 2.1. If S and T are self-mappings defined on a complete multiplicative metric space (X, d) satisfying the condition,

\[
d(Sx, Ty) \leq \max \left\{ d(x, y), d(x, Sx), d(y, Sx), \frac{d(x, Sx)d(y, Ty)}{1 + d(Sx, Ty)} , d(x, Ty), d(y, Ty) \right\}^λ
\]

\(\lambda \leq 1 \), then

\[
d(Sx, Ty) \leq d(x, y).
\]
\(\forall x, y \in X \) and \(\lambda \in [0,1/2] \), then \(S \) and \(T \) have a unique common fixed point.

Proof: Let \(x_0 \) be an arbitrary in \(X \). Since \(S(X) \subseteq X \) and \(T(X) \subseteq X \), we construct the sequence \(\{x_n\} \) in \(X \), such that

\[
x_{2n+1} = Sx_{2n} \quad \text{and} \quad x_{2n+2} = Tx_{2n+1} \quad \forall n \geq 0
\]

from the definition of \(\{x_n\} \) and using (2.1), we have

\[
d(x_{2n+1}, x_{2n+2}) = d(Sx_{2n}, Tx_{2n+1})
\]

\[
\leq \left\{ \max \left[d(x_{2n}, x_{2n+1}), d(x_{2n}, x_{2n+2}), d(x_{2n+1}, x_{2n+2}) \right] \right\}^\lambda
\]

\[
\leq \left\{ \max \left[d(x_{2n}, x_{2n+1}), d(x_{2n}, x_{2n+1}), d(x_{2n}, x_{2n+2}), \frac{d(x_{2n}, x_{2n+1})d(x_{2n+1}, x_{2n+2})}{1 + d(x_{2n+1}, x_{2n+2})} \right] \right\}^\lambda
\]

\[
\leq \left\{ \max \left[d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2}), 1, d(x_{2n}, x_{2n+1})d(x_{2n+1}, x_{2n+2}) \right] \right\}^\lambda
\]

since \(1 + d(x_{2n}, x_{2n+1}) > d(x_{2n}, x_{2n+1}) \)

\[
d(x_{2n+1}, x_{2n+2}) \leq \lambda^\lambda (x_{2n}, x_{2n+1})
\]

(2.3) \(d(x_{2n+1}, x_{2n+2}) \leq d^{1/\lambda} (x_{2n}, x_{2n+1}) \)

Now

\[
d(x_{2n}, x_{2n+1}) = d(x_{2n+1}, x_{2n+2}) = d(Sx_{2n}, Tx_{2n+1})
\]

\[
\leq \left\{ \max \left[d(x_{2n}, x_{2n+1}), d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+1}), \frac{d(x_{2n}, x_{2n+1})d(x_{2n+1}, x_{2n+1})}{1 + d(x_{2n+1}, x_{2n+1})} \right] \right\}^\lambda
\]

\[
\leq \left\{ \max \left[d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+1}), 1, d(x_{2n}, x_{2n+1})d(x_{2n+1}, x_{2n+1}) \right] \right\}^\lambda
\]

\[
d(x_{2n}, x_{2n+1}) \leq d^{1/\lambda} (x_{2n}, x_{2n+1})
\]

Research Publish Journals
\[d(x_{2n}, x_{2n+1}) \leq d^h(x_{2n-1}, x_{2n}) \]

(2.4) \[d(x_{2n}, x_{2n+1}) \leq d^{h^{2n-1}}(x_{2n-1}, x_{2n}) \]

From (2.3) & (2.4), we have

(2.5) \[d(x_n, x_{n+1}) \leq d^h(x_{n-1}, x_n) \quad \text{for all } n \quad \text{where} \quad h = \frac{\lambda}{1-\lambda} \]

Using (2.5), we have

\[d(x_n, x_{n+1}) \leq d^h(x_{n-1}, x_n) \leq d^{h^{n-2}}(x_{n-2}, x_{n-1}) \leq \ldots \leq d^{h^n}(x_0, x_1) \]

(2.6) \[d(x_n, x_{n+1}) \leq d^{h^n}(x_0, x_1) \quad \text{for all } n \]

For \(m > n \) and using (2.6) then we have,

\[d(x_m, x_n) \leq d(x_m, x_{m-1}) d(x_{m-1}, x_{m-2}) \ldots d(x_{n+1}, x_n) \]

\[\leq d^{h^{m-n}}(x_1, x_0) d^{h^{n-2}}(x_1, x_0) \ldots d^{h^n}(x_1, x_0) \]

\[\leq d^{h^{m-n}+h^{n-2}+\ldots+h^n}(x_1, x_0) \]

\[d(x_m, x_n) \leq d^{h^{m-n}}(x_1-x_0) \]

\[\Rightarrow d(x_m, x_n) \to 1 \quad \text{as} \quad (m, n) \to \infty. \]

Hence \(\{x_n\} \) is a multiplicative Cauchy sequence.

By the completeness of \(X \), \(\exists \ z \in X \quad \text{such that} \quad x_n \to z \quad \text{as} \quad (n \to \infty) \)

Moreover, we will show that \(Sz = z \)

By the notion of a complete multiplicative metric space.

\[d(z, Sz) \leq d(z, x_{2k+2}) d(x_{2k+2}, Sz) \]

\[= d(z, x_{2k+2}) d(Sz, x_{2k+2}) \]

\[= d(z, x_{2k+2}) d(Sz, Tx_{2k+1}) \quad \text{[using (2.2)]} \]

\[\leq d(z, x_{2k+2}) \max \left\{ \frac{d(z, x_{2k+1}), d(z, Sz), d(x_{2k+1}, Sz), d(z, Sz) d(x_{2k+1}, x_{2k+2})}{1 + (Sz, x_{2k+1})}, \frac{d(z, Sz) d(x_{2k+1}, x_{2k+2})}{1 + (Sz, x_{2k+1})} \right\}^\lambda \]

\[\leq d(z, x_{2k+2}) \max \left\{ d(z, x_{2k+1}), d(z, Sz), d(x_{2k+1}, Sz), d(z, Sz) d(x_{2k+1}, x_{2k+2}) \right\} \frac{d(z, Sz) d(x_{2k+1}, x_{2k+2})}{1 + (Sz, x_{2k+1})} \]

Taking \(k \to \infty \), we have

\[d(z, Sz) \leq d(z, z) \max \left\{ d(z, z), d(z, Sz), d(z, Sz), d(z, Sz) d(z, z) \right\} \frac{d(z, Sz) d(z, z)}{1 + d(z, z)} \]

\[\leq 1 \max \left\{ 1, d(z, Sz), d(z, Sz), 1, 1, 1 \right\} \]

\[\leq 1 \]
\[d(z, Sz) \leq d^k(z, Sz) \text{ a contradiction since } \lambda \in [0, 1/2] \]

which implies that \(d(Sz, z) = 1 \)

(2.7) Hence \(Sz = z \)

Now we will show that \(Tz = z \)

\[d(z, Tz) \leq d(z, x_{2k+1})d(x_{2k+1}, Tz) \]

\[\leq d(z, x_{2k+1})d(Sx_{2k}, Tz) \quad \text{[using (2.2)]} \]

\[\leq d(z, x_{2k+1}) \max \left\{ d(x_{2k}, z), d(x_{2k}, Sx_{2k}), d(z, Sx_{2k}), \frac{d(x_{2k}, x_{2k+1})d(z, Tz)}{1 + d(Sx_{2k}, Tz)} \right\}^\lambda \]

\[\leq d(z, x_{2k+1}) \max \left\{ d(x_{2k}, z), d(x_{2k}, x_{2k+1}), d(z, x_{2k+1}), \frac{d(x_{2k}, x_{2k+1})d(z, Tz)}{1 + d(x_{2k+1}, Tz)} \right\}^\lambda \]

Taking \(k \to \infty \), we have

\[d(z, Tz) \leq d(z, z) \max \left\{ d(z, z), d(z, z), d(z, z), \frac{d(z, z)d(z, Tz)}{1 + d(z, Tz)}, d(z, Tz), d(z, Tz) \right\}^\lambda \]

\[\leq 1 \max \left\{ 1, 1, 1, 1, d(z, Tz), d(z, Tz) \right\} \]

\[d(z, Tz) \leq d^\lambda(z, Tz) \text{ a contradiction since } \lambda \in [0, 1/2] \]

Hence, we have

\[d(z, Tz) = 1 \text{ i.e. } Tz = z \]

(2.8) \(Tz = z \)

using (2.7) and (2.8), we have

(2.9) \(Sz = Tz = z \)

Hence \(z \) is a fixed point of \(S \) and \(T \).

Uniqueness :

Let \(w \neq z \) and \(w \) is fixed point of \(S \) and \(T \)

Now

\[d(z, w) = d(Sz, Tw) \]

\[\leq \max \left\{ d(z, w), d(z, Sz), d(w, Sz), \frac{d(z, Sz)d(w, Tw)}{1 + d(Sz, Tw)}, d(z, Tw), d(w, Tw) \right\} \]
\[
\lambda \leq \max \left\{ d(z,w), d(z,z), d(w,z), \frac{d(z,z)d(w,w)}{1+d(z,w)}, d(z,w), d(w,w) \right\} \]

\[
\lambda \leq \max \left\{ d(z,w), 1, d(w,z), 1 \right\}
\]

\[
d(z,w) \leq d^\lambda(z,w) \quad \text{a contradiction since } \lambda \in [0,1/2]
\]

\[
\Rightarrow d(z,w) = 1
\]

i.e. z = w Hence proved.

Corollary: If T is a self mapping defined on a complete multiplicative metric space \((X,d)\) satisfying the condition

\[
d(Tx,Ty) \leq \max \left\{ d(x,y), d(x,Tx), d(y,Tx), \frac{d(x,Tx)d(y,Ty)}{1+d(Tx,Ty)}, d(x,Ty), d(y,Ty) \right\} \]

and \(\lambda \in [0,1/2] \quad \forall \ x, y \in X\). Then T has a unique fixed point.

REFERENCES

[4] Muttalip Özavşar and Adem C. Cevikel, Fixed points of multiplicative contraction mappings on multiplicative metric space, Mathematics Subject Classification, 1991

