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Abstract: In this paper the upper bound for the derivative of 5-th degree complex polynomials norm according to
a, and p complex polynomials norms are studied, for this kind of polynomials, the best possibilities have found.
For this Brinstein Type inequalities Clement Frappier has been published a relation for complex polynomials of
degree n > 6 (Theorem 8, [9]), but for n=2, 3, 4 and 5 do not exist a unique relation. | have obtained the best
possibility for dg in the following relation. Let p(z) = Zleajzi €P,; then ||p’|| + dslay| < 5]ipll,

d; is the smallest positive rot of the following equation. 80 — 286x? + 16x> + 106x* + 12x° — x° =0
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I. INTRODUCTION

Let p(2) = X} a]-Zj eP,; with complex coefficients, where B, is Class of all polynomials with degree at most n.
Bernstein’s classical inequality states [|[p’|| < nllpll where |[|p]| := max,,-,|p(2)|, from this inequality we can obtain

lp®]| < (nr_”k)! lIpll, for 1 < k < n. This type of inequality was improved by many mathematicians by deferent shape, in

some of them seem a,, a, and a; and some of them have trigonometric form, In this paper | have found an equality
regarding to a, for n=5, which for n > 6 was studied by Clement Frappier.

The proof methods are “bound preserving convolution operators in the unit disk and interpolation formulas”. First some
definitions and useful theorems mentioned, then by the using these theorems the problem solved.
Let A be set of all analytic functions in|z| < 1, Ay All function f € A with f(0) :1, R Set of all functions with

Re(f(2)>2 — _
2, CO Convex domain.

Definition 1:

Let f(z) = X, arz® and g(z) = ¥, b, z* two analytic functions, the function the convolution (or Hadamard product)
f * g, defined by

n
Fr@i=)  ab"
=
also belong A\
Definition 2:
| pll=sup[p()]
i) A function feA is norm preserving for Ry if ”f * p|| S”p" for all P € x , [2<t . Set of these functions show

with Br (Dimiter & Richard, 2002).
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feA is convexity preserving on Ry if (f xp)(D) c co(p(D)) for all peh, . Set of these functions show

ii) A function
with Br .
Definition 3. A Hermitian matrix Ais positive definite if X *Ax20 for every x € C" (Blyth & Robertson, 2006).

Il. LITERATURE REVIEW
Let p(2) = ;_1:1 ajzj €B, with complex coefficients, the famous Bernstein’s inequality states that||p’|| < n||p||, this kind

of inequality have improved by Ruschewey||p’|| +%Ia0| < n|lpll. Then Fournier has published a deferent relation

zp!(2)

+
Khavagpur found an inequality regarding to k-th derivative (Khavagur, 2000).

which belong to n and ', |p(z) —%(Z) < |plp,z € D,p € P,, where D is unit disk (Fournier, 2004).

n

|(k) |<n(n—1)(n—2)...(n—k+1) 1{|()|+ In( )|+<1 1) (82| 0k 1
PP = TG [zk p(A)l + max|p(Bz o) max [p(Bz)l|.p # 0,k 21,
Theorem: A Hermitian Matrix
a;, &, a,
A.— a‘21 a22 aZn
a, a, an, aij =aji
is positive definite if it’s all principle minors k<n ,
Q, A, - gy
Ak . Ay Ay v Ay
B By 8k

are positive definite (Fuzhen, 2009).

Definition: Let V and W linear complex spaces, a function f:V X W — C on V x W with the following properties is semi
bilinear, for all k,,k, € Cand all x;,x,,x € Vand n,,n, € W the

F (kX + K%, ) =K T (%, 77) + K, T (X,,77)

f (K7, + Kyo17,) = ka f (%,77,) + K2 F(%,77,)-
if V = W thenfis semi bilinear on V (Steven, 2008).

Definition: Let V be a complex vector space, a functiong: V — C on V is Hermitian, if a Hermitian semi bilinear form
f:V = Cexistsuch that g(x) = f(x,x) forall x e V.

Let V be n dimensional vector space and B: = {a,,a,,...,a,}a basis for Vand g:V — C Hermitian form on V. Let
A:= (a;;) = (f(a),a;)) € C™" be matrix form f then for every x € V component vector x: = (x1, X,,..., x,)" € C"
we have,

g()=f(xx) =T %xa.>.xa,)=> > xX.f(a,a,)=x*Ax
k=1 pu=1

k=1 u

A is matrix form g, belong to basis B (Seymour & Marc, 2004).
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I1. METHODOLOGY
The proof methods are “bound preserving convolution operators in the unit disk and interpolation formulas”. By the help
of theorem.1 and conservative prosperities’ of B, (Q(Z) €B; then ”Q * p” < ” p” ” and QeB) <Q*<B , ) have found
a related Qe BS polynomial. For this propose have the related coefficients determinant on(Z) , analyzed in which area

0
this determinant and its principle minors are positive. For the destining of this polynomial QeB, the theorem 1 and
theorem 7 are used.

A. Some useful Theorems

Theorem 1: Let V be a n dimensional complex vector space and g be a Hermitian form on V, then g is positive defined if
and only if the diagonal element of matrix form of g are positive (Gerd, 2011).

Proof. Lets 9 define by,

g(x):=x*Ax=Y.>"a, XuX,

u=lv=1
for every x € C™ and f is related polar form. Then A is matrix of 9 belong to standard basis {e;, e,,..., e,}, e; € C",
iel, ={12,..,n}
First Lets for every k=12,...n , the A #0 . (8]
We will show that exist a basis {b;, b,,..., by}, b; € C*, i € I, such that matrix form of g is diagonal and its diagonal
elements are also belong to principle minor of this matrix.
we have vectors b, b,,..., b, € C™" with the properties,
f(,.0)=0 forall uyv=12..n, wzv )
To make it, the following relations will help,
b1 = fue
bz = ,82161 + ﬂzzez ,
B = By + Buoo 4ot Brolo 3)
We need that,
f = — — = =
(b,.,)=0 forall #=1 2y =1 0q F(O,8)=1g oy v=L2.m 4)

thenifu <v

flo,b,)=f(b,.>" B.e)= ZLBM f(b,.e,)=0.

f(b,b)="~f(b,b)=0
For u > v the same result will obtain, then f is Hermitian, also ( “ ) ( “ ) forall # 7V

From (4) obtains (2). Now we have to define Vectors by, b,,..., b, € C" that satisfy (10).

b vel |, ={L2,.

Choose 2N} ) in (3), it give a non-homogenous linear equation system,

f(zzzlﬂvleiy’ev)zol for,u=1,2,...,V—1

v from (4) for a fix " (here

f (Z;zlﬁvﬂ,eﬂ,u ’ev) = 1
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B Bizres By are unknowns with the properties that semi bilinear form f ,
> B.f,e)=0 foru=12.,v-1

Z;ﬂﬂ\d f (e/l’ev) =1

and for 4V €l f(e,e,)=a,

ailﬁvl +a12ﬂv2 +...+ alvﬁw = 0

QP T80y, +"'+a2v:3vv =0

&1 B0+ 2P+ +3a,,8, =0
avlﬂvl-'—avzﬂvz +"'+avvﬂw =1 (5)

Determinant of the coefficient of this non-homogenous linear system is A , itis under (1) not zero. Then (5) have solution

B Bizses By for every vel, and by, b,..... b, vectors which by (3) uniquely obtained. More over these vectors are

b:=>" Ah =0
linear independent. From szl vy obtain,

f(b,e)=A"f(b.,e)+Af(b,,e)+..+4,1(b,e)=0,

From (3), 2.1:0, and from f(b,e2)=0, will give z :O, ..., from f(b,en)=07 A =0 7pen Bubernbi} 455
basis for C™.

B:==(b
Now if ©,) be matrix Form of 9 related to 1Ptz 0} pasis. For 44V € 1

g0 =f(xx)=fQ . xa. > %3,
= Z::ZLXVZ:I::[;V f (av, a,u) = X* AX,

b,="f(,b,)

1,2,..,n

b,=0 - . -
From (2) * forall 4V € Inthen B is diagonal. For every diagonal element B V= , we have

bw = f (bv’bv) = f (Z:zlﬂvﬁeﬂ 'bv) = Z;:lﬂvi f (el’bv)
= Z\;:lﬁvﬂ f (bv'eﬂ) = ﬁw

If A :21, from (5) and Cramer role,

A
A for V=12,..,n

B =

Hence,

Bodia(te, A A,
AR, )

is the form matrix Y related to basis {bl’bZ""’bn}.
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As

Let the principle minors A of Aare positive definite, then A forall v =12,.,n (due to A :1alsov 21).

From (6) 9 also Aare positive definite.

Now Let Aand 9 are positive definite. We will show that A =0 forall v € L, ,

a, &, -, f(el’el) f(EZ!el) f(ev’el)
Ay Ay o Ay, f(el’ez) f(ezvez) f(evvez)

A=l o T : . =0
avl av2 a'W f(eliev) f(eZ’ v) f(ev’ v)

The columns of this determinant are linear defendant, therefore exist scholars A4,4,,...,4, € C  with
4, 4,,...4,)#(0,0,...,0) and A, f(e 'N)+ﬂzf(ezyﬂ)+---+ﬂvf(ewﬂ)=0,for u=12,..v

Hence | (A8 + 4,8 +..+48,1)=0 implies,

f(le +4e,+..+46,)=0

Now Yo =&+ 48+t A8 qe o(h A d) #(0.0,...,0) 4 unequal to zero, but 9%) =0 From this

vel

contradiction Ais positive definite the assumption that A =0 , vel, is not true then A # Ofor all n. From the first

An1

step of proof exist a basis{bl’bz""'bn}for C™ relative that diag(':—o,j—l ) is form matrix of 9 . Then 2= A” L > 0 for
1

all V€ InimpliesA1>0’ A, >0,... A, >0

feB

<
Theorem 2: n If and only if a complex mas # with ””” _1and an analytic function f on oD, exists such that

f(2)=[p—d p+z””F(z)
1- (Ruscheweyeh, 1982).

feB=u,B

<
Note: From the theorem.3, n if and only if, a complex mass H with ||,u|| _1exist such that

1
f(z)zé{)ﬁdﬂ(é’): zeh,

if fe nand f(0)=1 ,then # is probability mass. In this case,

(f*a)(@) = [ A& ecoq(D,)

and f is as well convexity obtained. From the other said, if f is convexity obtained on P , then have to be f0)=1
(from the q=1le Pn) and feB, satisfy.
Theorem 3: feA Is convexity preserving on R , iIf a probability mass Hon oD, and F € Aexist such that
f(2)=| —d,u—i- 2"™F(2).
i l-28
From a famous Herglotz theorem is clear that the set of
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1
f(Z)=EID1—d1_Z§ Iy

is probability mass, functions are equal to R (Ruscheweyeh, Convolutionin geometric function theory, 1982).

Theorem 4: The following statements are equivalent:
f eB.

co[(f *g)D,]=co(D,), qP,.

_ n+l
heR FeA existsuchthat [ =N*T2 F
0
Lemma 1: A polynomial QeF, belongs to B, if and only if, exist a fERWith the following properties
1(2)-Q(2)=0(2") for 2 >0
_& &, o

f(z)=—+2az".(aeR)

Theorem 5: Let 2 2 . Then f(2) is holomorphic and Re(f(2)) 20 for |Z| <1if and only if

A>0,(1=012..) o A>0A>0..A >0A=A=.=0 o Ay theorem.1 defined (Tsuji, potential teory in
modern function theory, 1959).

Q(2)=1+3 az"eB’
Theorem 6: n=1
Richard, 2002).

If and only if, when the following hermit’s matrix is positive defined (Dimiter &

A Q)=

dn1 aAn-2 an-3 a1

L an dn-1 aAn-2 1

feR , such that f(z)—Q(z):O(z”). By using the theorem.6 A Q) have to be positive

Proof: IfQ € Bf, then exist
semi defined. Conversely if this is not true then the A Q) is positive semi defined, by using theorem 6, the developing of
Q(2) tg a function T €Rsuchthat (@~ =0(") for =0 ang lemma (1) show that Q BS.
Theorem 7: Let p(z) = Y-, a;z € B,, n = 6,then
Ip'll + dnlaz| < nllpll.
d, isin (0, 1) interval root of the following equation.
an— (12n+ Dx? —x3 + Gn + 7)x* — ;xs —nl—:fxﬁ = 0.
The d,, is the best possible number for n = 6 CITATION Placeholder3 \t \l 1033 (Frappier, 1988).

IV. ESTIMATION OF COMPLEX POLYNOMIALS NORMS OF DEGREE 5 AND ITS
DERIVATIVES BELONGS TO a,

By using the above information, | well find a best possibility d,, such that ||p’]| + d,,|a,| < nl|p]| for n=5.
Let p(2) = X3_, a;z’ €P,; then
Ip'll + dslaz| < lIpll,

ds is the smallest positive rot of the following equation.
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32 —200x? + 8x3 + 152x* + 12x°> —x6 =0
Note: for n > 6 a theorem has by Cle’ment Frappier have proofed.

Proof: From Frappier [1] we have,

1 7 — 1 ’ _
IP'Il + dnlaz| = supe<a,llzp’(2) + a@azz?|l, and = [zp’(2) + @a,z*] = Q(2) * p(2),

Q(2) = i+?zz +Z’}=3£zj, n > 3.

Then,

n n—j . a+?2 1
Q' (2) = E L4+ Z"2 4 g1
j=3 N n n

We will study the definiteness the following matrix,

n n-1 n-2 3 a+?2 1
n-1 n n-1 4 3 a+2
n-2 n-1 n 5 4 3
m (a)=| : : : ) : : :
a+2 3 4 n-1 n-1
1 a+2 3 <+ n=2 n-1 n
0 1 a+2 n-3 n- n-1

We will study the following polynomial that for which « it belongs to B2?

n3pn—j . a+2 1
0*(2) = z ]Z’ + "2 4z 4 02"
j=o T n n

This belongs only to definiteness of the m, (a) matrix. For this propose we will direct calculate belong to principle

minors. The following Mathematica program is useful for calculation.

For n=5 the definiteness of the following matrix has to be studied,

5 4 3 a+?2 1
4 5 4 3 a+?2
_ 3 4 5 4 3
m,(a) =m(5,5 a,a) = ~.2 3 4 5 4
1 a+2 3 4 5

The first principle minor,

det(m, (o)) = det(m(5, @, @)) =[5/ =5

The second Principle minor is,

- 5 4
det(m,(e)) =det(m(5,2, ¢, @)) = ‘4 5‘ =9
The third principle minor is,
5 4 3
det(m, («)) := det(m(5,3,,a)) =|4 5 4|=16
3 45
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The third principle minor is,

5 4 3 a+?2
det = det(m(5,4, o, P4
e(m,(a)) =det(mG 4 2. 0))=| ., ¢
a+2 3 4 5
=28+ 2a+2a—9aa
=28+ 4(Re(a)) - 9af
m, is positive if
p,(x)=28-4x-9x* >0
The smallest positive root of p,(x)is x =1.55556.
The fourth principle minor is:
5 4 3 a+2 1
4 5 4 3 a+2
det(m, («)) = det(m(5,5, @, r)) = det| 3 4 5 4 3
a+2 3 4 5 4
1 a+2 3 45

=48 — 80|a|? — 4 = 28 + 2(2Re(a)) + |a|? = 28 + 4Re(a)
48 — 80|a|? — 4(a?a@ + aa?) + 5a?a? = 48 — 80|a|? — 4(a@ + a)ad@ + 5|a|*
= 48 — 80|a|? — 4(2Re(a))|a|? + 5|al*
is positive if,
pa(x) = 48 — 80x% +8x3 + 5x* > 0

The smallest positive root of P, (X) is x = 0.82842

5 4 3 a+?2 1 0

4 5 4 3 a+2 1

_ 3 4 5 4 3 a+?2
det(m,(«)) =det(m(5,5, , @)) = det ~io 3 2 . A 3
1 a+2 3 4 5 4
1 g+2 3 5

det(ms(a)) = 80 + 4a® — 256a& — 8a?@ — 6a°@ + 4a? — 8aa? + 121a%a? — 6a’a* — 6ad® — 6a’a’ — a’a®
= 80 + 4a? — 256aa — 8a’a — 6a3a + 4a? — 8aa® + 121a’a? — 6a3a? — 6aa® — 6a?a® — alad
=80 + 4(a? + a%) — 256|al?> — 8(a’@ + aa?®) — 6(a’a + 6aa’®) + 121a’a? — 6(a3a? + a’a®) — ala’
=80 + 4(4(Re(a))? — 2|al®) — 256|a|? — 8(a + @)aa — 6(a’ + a¥)aa + 121a*a? — 6(a + @)a’a? — a’a®

=80 + 16(Re(a))? — 8la|? — 256|a|? — 16Re(a)|a|? — 6(4(Re(a))?|al? — 2|al®)|a|? + 121a&? — 12Re(a)|a|*
— |a|®

= 80 + 16Re(a))? — 8la|? — 256|a|?> — 16Re(a)|a|? — 24(Re(a))?|a|? + 12|a|* + 121a?@? — 12Re(a)|a|* — |a|®
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= 80 + 16Re(a))? — 264|a|?> — 16Re(a)|a|? — 24(Re(a))?|al? + 133|a|* — 12Re(a)|a|* — |a|®
is positive if
p(x) = 80 — 16x% — 264x2 + 16x3 + 106x* + 12x> — x° > 0
p(x) = 80 — 286x% + 16x3 + 106x* + 12x°> —x® >0

The smallest positive root of p4(X) isx = 0.57848.
V. CONCLUSION

The above calculations shows that the smallest positive root of p, (x = 1.55556) is greater than the smallest positive root
of p,(is x = 0.82842) is greater then the smallest positive root of ps(x* = 0.57848). Then mg is positive definite if |a|
is smaller then the smallest positive root of pg. It is also clear that the pg(x) for x = x* + € can be negative for a small
g€ > 0. From the study of the d,, for n =5 and for n = 6 which obtained by Fprafer obtained, that d,, is monotone
increasing and for n — oo is the smallest positive zero of. Some value of d,, is in the following table:

IR

n| d,

5 |0.587625
10 |0.622260
20 |0.627127
100{0.631069
oo |0.632062
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