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I.   INTRODUCTION 

Fractional differential equations have excited in recent years a considerable interest both in mathematics and in 

applications. They were used in modeling of many physical and chemical processes and in engineering [1-4]. In its turn, 

mathematical aspects of fractional differential equations and methods of their solution were discussed by many authors: 

the iteration method in [5], the series method in [1], the Fourier transform technique in [6-7], special methods for 

fractional differential equations of rational order or for equations of special type in [8-13], the operational calculus 

method in [14-15].  

Unlike standard calculus, there is no unique definition of derivative in fractional calculus. The definition of fractional 

derivative is given by many authors. The commonly used definitions are the Riemann-Liouvellie (R-L) fractional 

derivative [16], Caputo definition of fractional derivative [17], the Grunwald-Letinikov (G-L) fractional derivative [16], 

and Jumarie’s modified R-L fractional derivative is used to avoid nonzero fractional derivative of a constant functions 

[18]. After the first congress at the University of New Haven, in 1974, fractional calculus has developed and several 

applications emerged in many areas of scientific knowledge. As a consequence, distinct approaches to solve problems 

involving the derivative were proposed and distinct definitions of the fractional derivative are available in the literature. 

In this paper, the general solution of exact fractional differential equation (FDE), regarding the Jumarie type of modified 

R-L fractional derivatives can be obtained by using a new multiplication of fractional functions and chain rule for 

fractional derivatives. In fact, the result we obtained is the generalization of general solution of exact ordinary differential 

equations. On the other hand, an example is proposed to demonstrate the advantage of our result. 

II.   PRELIMINARIES 

In the following, fractional calculus used in this paper is introduced. 

Definition 2.1: If    is a real number and     is a positive integer  Then we define the modified Riemann-Liouville 

fractional derivatives of Jumarie type ([16])  
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dt is the gamma function defined on    . If (    
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exists, then  ( ) is called  -th order  -fractional differentiable function, and (    
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[ ( )] is the  -th order  -fractional 

derivative of  ( ). Moreover, we define the  -fractional integral of  ( )      
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  [ ( )], where    , and 

 ( ) is called  -fractional integral function. Furthermore, if   (     )  is a two-variable  -fractional function defined 

on [   ]  [   ], then we define    
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 [  (     )] are  -fractional partial derivatives with respect 

to   and   respectively. And,    
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 [  (     )] are  -fractional integrals with respect to x and y 

respectively. 

Proposition 2.2:  Suppose that        are real constants and         then 
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In the following, we define a new multiplication of fractional functions. 

Definition 2.3 ([21]): Let       be complex numbers,      ,        be non-negative integers, and        be real 

numbers,   ( )  
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   for all  . The   multiplication is defined by 
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If     (   ) and    (   ) are two fractional functions, 
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Proposition 2.4:       (   )    (   )  ∑
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Definition 2.5: Let (  (   ))
  

   (   )      (   ) be the   times product of the fractional function   (   ). 

If   (   )    (   )   , then   (   ) is called the   reciprocal of   (   ), and is denoted by (  (   ))
   

. 

Remark 2.6: The   multiplication satisfies the commutative law and the associate law, and is the generalization of 

ordinary multiplication, since the   multiplication becomes the traditional multiplication if    .  

Definition 2.7:  If f ( )  ∑   
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Theorem 2.8 (chain rule for fractional derivatives) ([21]): If f ( )  ∑   
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Definition 2.9: If     are real variables,     ( ) [   ]  [   ] ,  ( )            Suppose that 

  (     ) ,    (     )  defined on  [   ]  [   ] , and have continuous first-order  -fractional partial derivatives, 

   (     )    , then 
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is called exact  -fractional differential equation, if    
 [  (     )]     

 [  (     )]. 

III.   MAJOR RESULT 

To obtain the main result, a lemma is needed. 

Lemma 3.1:  Suppose that the assumptions are the same as Definition 2.9, and     is a constant. If     
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It follows that 
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for some  -fractional function  (  ). 

And hence, 
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Similarly, 
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Therefore, Eq. (13) holds. 

In the following, we obtain the general solution of Eq. (12). 



                                                                                                                                                    ISSN 2348-1218 (print) 

International Journal of Interdisciplinary Research and Innovations     ISSN 2348-1226 (online) 
Vol. 8, Issue 4, pp: (100-105), Month: October - December 2020, Available at: www.researchpublish.com 

 

   Page | 103 
Research Publish Journals 

 

Theorem 3.2:  Let the assumptions be the same as Definition 2.13, and   be a constant. If the  -fractional differential 

equation   
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is exact, then it has the general solution  
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On the other hand, using chain rule for fractional derivatives yields 
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And hence,  (     )   .                                                                                                                         Q.e.d. 

IV.   EXAMPLE 

In the following, we give an example to illustrate our result. 

Example 4.1:  Consider the    ⁄ -fractional differential equation 
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It follows from Definition 2.9 that Eq. (20) is exact. Suppose that  ( )   , then by Theorem 3.2, the general solution of 

Eq. (20) is 
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Since  ( )   , it follows that    , and hence we get the particular solution  
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V.   CONCLUSION 

In this paper, we use a new multiplication of fractional functions and chain rule for fractional derivatives to find the 

general solution of exact fractional differential equations. In fact, the new multiplication we defined is a natural operation 

in fractional calculus, and the result we obtained is a generalization of general solution of exact ordinary differential 

equations. In the future, we will use the modified R-L fractional derivatives of Jumarie type and the new multiplication to 

extend the research topics to the problems of fractional calculus and engineering mathematics. 
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