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I.   INTRODUCTION 

Fractional calculus belongs to the field of mathematical analysis, involving the research and applications of arbitrary order 

integrals and derivatives. Fractional calculus originated from a problem put forward by L’Hospital and Leibniz in 1695. 

Therefore, the history of fractional calculus was formed more than 300 years ago, and fractional calculus and classical 

calculus have almost the same long history. Since then, fractional calculus has attracted the attention of many 

contemporary great mathematicians, such as N. H. Abel, M. Caputo, L. Euler, J. Fourier, A. K. Grunwald, J. Hadamard, 

G. H. Hardy, O. Heaviside, H. J. Holmgren, P. S. Laplace, G. W. Leibniz, A. V. Letnikov, J. Liouville, B. Riemann, M. 

Riesz, and H. Weyl. With the efforts of researchers, the theory of fractional calculus and its applications have developed 

rapidly. On the other hand, fractional calculus has wide applications in continuum mechanics, quantum mechanics, 

electrical engineering, fluid science, viscoelasticity, control theory, dynamics, finance, and so on [4-20, 29]. Moreover, 

the applications of fractional calculus to fractional differential equations can refer to [21-28]. 

However, different from the traditional calculus, the rule of fractional derivative is not unique, many scholars have given 

the definitions of fractional derivatives. The common definition is Riemann-Liouville (R-L) fractional derivatives [1-2]. 

Other useful definitions include Caputo fractional derivatives, Grunwald-Letnikov (G-L) fractional derivatives [1], and 

Jumarie type of R-L fractional derivatives to avoid non-zero fractional derivative of constant function [3]. In this paper, 

we make use of fractional Fermat’s theorem and fractional Rolle’s theorem to prove our major result: fractional mean 

value theorem. In fact, the fractional mean value theorem is the generalization of mean value theorem in traditional 

calculus. In addition, two examples are proposed to illustrate its applications.  

II.   METHODS AND RESULTS 

The following is the fractional calculus used in this article. 

Definition 2.1: Assume that    is a real number and   is a positive integer  The modified Riemann-Liouville fractional 

derivatives of Jumarie type ([12]) is defined by  
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where  ( )  ∫        
 

 
dt is the gamma function defined on    . If (     

 )
 
[ ( )]  (     

 )(     
 )    

(     
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   in general. We have the following property [13].  

Proposition 2.2:  Let       be real numbers and        then 
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Definition 2.3 ([14]):  The Mittag-Leffler function is defined by 
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   ,                                                                                  (4) 

where     is a real number,    , and   is a complex variable. 

Definition 2.4 ([13]): Suppose that       and   is a real variable. Then   ( 
 )  is called  -order fractional 

exponential function, and the  -order fractional cosine and sine function are defined as follows: 
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 In the following, we introduce a new multiplication of fractional functions. 

Definition 2.5 ([15]): If       are complex numbers,      ,        are non-negative integers, and        are real 

numbers,   ( )  
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   for all  . The   multiplication is defined by 
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where (
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If  (   ) and  (   ) are two fractional functions,  
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Proposition 2.6:  (   )   (   )  ∑
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Definition 2.7: Let ( (   ))
  
  (   )     (   ) be the   times product of the fractional function  (   ). If 

 (   )   (   )   , then  (   ) is called the   reciprocal of  (   ), and is denoted by ( (   ))
   

. 

Definition 2.8:  If f ( )  ∑   
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Next, we transform the definition of Jumarie type of modified R-L fractional derivatives into the form of limit. 
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Theorem 2.9: Let       and        for all      , then 

(     
 )[ ( )](  )   (   )         

 ( )  (  )

(    )
 .                                                  (13) 

Theorem 2.10 (fractional Fermat’s theorem):  Suppose that       and        for all      . If     is an extreme 

point of   -fractional function    and  (     
 )[ ( )](  ) exists, then  (     

 )[ ( )](  )   . 

Proof   Since  (     
 )[ ( )](  ) exists, by Theorem 2.11, we know that         
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maximum point of  , that is,  (  )   ( ) on some neighbourhood of   . Then 
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   . Using Theorem 2.11 yields   (     

 )[ ( )](  )   . The case that     is a local minimum point 

of   can be proved in the same way.                                                                                                          Q.e.d. 

Theorem 2.11 (fractional Rolle’s theorem):  Assume that       and        for all      . If    is continuous on 

closed interval [   ]  and  -fractional differentiable on open interval (   ) with  ( )   ( )  then there exists   

(   ) such that  (    
 )[ ( )]( )   . 

Proof   Since    is continuous on closed interval [   ],   must have a maximum value M and a minimum value m on 

[   ] . If    , then   is a constant function, and hence (    
 )[ ( )]( )    for all   (   ) . Without loss of 

generality, we may assume    . Since  ( )   ( ), it follows that there is    (   ) such that  ( )   . And 

hence    is an extreme point of   . By fractional Fermat’s theorem,  (    
 )[ ( )]( )   .                                 Q.e.d. 

Using fractional Rolle’s theorem, we can obtain the following major result of this paper. 

Theorem 2.12 (fractional mean value theorem):  Assume that       and        for all      . If    is 

continuous on closed interval [   ] and is  -fractional differentiable on open interval (   ), then there exists    (   ) 

such that  
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it follows from fractional Rolle’s theorem that there is    (   ) such that   (    
 )[ ( )]( )   . And hence,  
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Therefore, 

 ( )   ( )  
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  (   ) .                                                  Q.e.d. 

Corollary 2.13: Let       and        for all      . If   is  -fractional differentiable on open interval (   ) such 

that  (    
 )[ ( )]     for all    (   ). Then   is a constant function on (   ). 
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Proof   If    is not a constant function on (   ), then there exist        such that 

            and    (  )   (  ).                                                       (20) 

By fractional mean value theorem, we obtain 
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for some    (     ). 

Therefore, 

(     
 )[ ( )]( )   ,                                                                                 (22) 

a contradiction.                                                                                                                                                           Q.e.d. 

 

III.   APPLICATIONS 

 

Example 3.1:  Suppose that       ,     are real numbers, and        for all     . Let  ( )       ( 
 ).  Using 

fractional mean value theorem yields 
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That is,     ( 
 ) is a Hölder continuous function with exponent  . 

Proposition 3.2: Let       ,    , and        for all     . Then  
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Proof  Let   ( )     (   
 ). Since 

 (    
 )[ ( )]  (  

 

 (   )
  )

   

                                                                             (26) 

and  ( ) satisfies the conditions of fractional mean value theorem on closed interval [   ], it follows that  
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IV.   CONCLUSION 

As mentioned above, we use fractional Fermat’s theorem and fractional Rolle’s theorem to prove fractional mean value 

theorem based on Jumarie’s modified R-L fractional derivatives. The fractional mean value theorem is the theoretical 

basis of fractional differential calculus, and we hope that it can be widely used to solve many problems in fractional 

calculus. In the future, we will make use of the methods provided in this paper to extend our research fields to applied 

mathematics and fractional differential equations. 
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