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I.   INTRODUCTION 

For centuries, mathematics has played a vital role in the development of human civilization, because in other fields, it 

allows the description and prediction of events in the real world, through mathematical representations. In this regard, it is 

reasonable to emphasize the importance of differential calculus and integral calculus for the study of many of the laws of 

nature. Fractional calculus is the study of derivatives and integrals of arbitrary orders. For a long time, the theory of 

fractional calculus developed only as a theoretical field of mathematics. However, in the last decades, it was shown that 

some fractional operators can better describe some complex physical phenomena, so fractional calculus has been paid 

more and more attention by mathematicians. On the other hand, physicists and engineers are also very interested in the 

applications of this nice theory. Many real life phenomena have been described using fractional differential equations, 

such as viscoelasticy, continuum mechanics, optimal control, hydrologic modelling, variational problems, fluid 

mechanics, finance, and others [1-17]. Furthermore, the applications of fractional calculus to fractional differential 

equations can refer to [18-25]. 

Logistic equation is a famous population growth model introduced by mathematical biologist Pierre Francois Verhulst 

[26]. It is the extension of Malthus population model. The logistic population model is considered as an important type of 

nonlinear differential equations because it can be widely used in biology, medicine, economics and management. The 

classical logistic (or Verhulst’s) equation is the nonlinear initial value problem: 
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where  ( ) denotes the population at time  ,      is the rate of maximum population growth,      is the population 

at time    , and      is the carrying capacity, i.e., the maximum attainable value of population. By dividing both sides 

of Eq. (1) by      and defining   ( )  
 

    
 ( ) as the normalization of population to its maximum attainable value, 

we obtain the differential equation with initial value: 

{
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For each realization of    , Eq. (2) has an exact closed form solution: 



International Journal of Engineering Research and Reviews     ISSN 2348-697X (Online) 
Vol. 9, Issue 2, pp: (13-17), Month: April - June 2021, Available at: www.researchpublish.com 

 

Page | 14 
Research Publish Journals 

 

 ( )  
  

   (    )                   .                                                              (3) 

The fractional logistic equation is a generalization of the classical model that is obtained when replacing the first order 

derivative by a fractional derivative of order   ,      . The solution to the fractional logistic equation has received 

much attention from many researchers in the field of fractional calculus, and some attempts were made to determine the 

exact, analytical or approximation solution [27-35]. In this paper, based on Jumarie’s modified Riemann- Liouville 

fractional derivatives, a new multiplication is proposed, and the closed form solution of the fractional logistic equation is 

obtained by using the methods of separation of variables, partial fractional integration and chain rule for fractional 

derivatives. The exponential function plays a fundamental role in mathematical analysis and it is really useful in the 

theory of integer order differential equations. In the case of fractional order, it loses some beautiful properties and Mittag-

Leffler function appears as its natural substitution. 

II.   PRELIMINARIES AND METHODS 

At first, we introduce the definition of fractional derivative used in this paper and provide some basic properties as 

follows: 

Definition 2.1: Let     be a real number and    be a positive integer. The Jumarie type modified R-L fractional derivatives 

([36]) is defined as  
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where  ( )  ∫          
 

 
 is the gamma function defined on     . On the other hand, we define the  -fractional 

integral of  ( )  as  (    
 )[ ( )]  (    

  )[ ( )], where     and  ( ) is called  -fractional integrable function.   

Proposition 2.2 ([37]):  If        are real numbers and        then 
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    ,                                                                         (5) 

and 

   
 [ ]   .                                                                                       (6) 

Definition 2.3 ([38]):  The function   ( ) is named after the great Swedish mathematician Gösta Mittag-Leffler (1846-

1927) who defined it as a power series given by  

  ( )  ∑
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   ,                                                                          (7) 

where   is a real number,    , and   is a complex variable.   ( )  ∑
   

 (    )

 
     is called the  -fractional exponential 

function. 

         Next, we introduce a new multiplication of fractional functions. We continue with this definition mentioned in [39]. 

Definition 2.4 ([39]): Suppose that        are complex numbers,      ,       are non-negative integers, and       

are real numbers,   ( )  
 

 (    )
   for all  . The   multiplication is defined as 
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where (
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Let  (   ) and  (   ) be two fractional functions,  

 (   )  ∑   
 
     (   )  ∑

  

 (    )
(   )  

   ,                                            (9) 
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Then we define 
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Proposition 2.5:   (   )   (   )  ∑
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Definition 2.6: Suppose that  ( (   ))
  

  (   )     (   ) is the   times product of the fractional function 

 (   ). If  (   )   (   )   , then  (   ) is called the   reciprocal of  (   ), and denoted as ( (   ))
   

. 

Theorem 2.7 (chain rule for fractional derivatives) ([39]): If f ( )  ∑   
 
     ,   (   )   ∑   

 
     (   )   Let  

   (  (   ))  ∑   
 
   (  (   ))

  
 and     

 (  (   ))  ∑    
 
   (  (   ))

 (   )
, then 

(    
 )[    (  (   ))]     

 (  (   ))  (    
 )[  (   )].                                    (13) 

III.   MAJOR RESULT 

The main purpose of this section is to introduce the fractional logistic equation we defined, and derive the closed form 

solution of this equation. 

Theorem 3.1  Let        , and     . The fractional logistic equation with initial value: 

{
(    

 )[  ( )]     ( )  (    ( ))        

  ( )    

                                                           (14) 

has an exact solution 
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               .                                                  (15) 

 

Proof   By separation of variables, we have 

(     
 ) *(   (    ))
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 )[ ] .                                                     (16) 

Using partial fraction integral method yields 

(  ( )   )    ( )       (   ) ,                                                             (17) 

where    is a constant. 

Since    ( )    , it follows that   
    

  
. And hence 
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Therefore,  

  ( )    (   (    )  (   ))
   

                                                     Q.e.d. 

Remark 3.2: We can verify the correctness of Theorem 3.1 directly. By chain rule for fractional derivatives, the fractional 

derivative of Eq. (15)  
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IV.   CONCLUSION 

From the above discussion, we know that the new multiplication, separation of variables, and chain rule for fractional 

derivatives play important roles in this article. In fact, these methods are widely used and can easily solve many problems 

of fractional calculus and fractional differential equations. In addition, the fractional logistic equation is a generalization 

of the classical logistic equation. In the future, we will use the Jumarie type of modified R-L fractional derivatives, the 

new multiplication, and Mittag-Leffler function to expand our research area to applied science and engineering 

mathematics. 
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