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Abstract: Neural network-based controller is one of the techniques of adaptive control. The adaptive controller is 

developed to overcome the shortcomings of the non-adaptive controllers. This control technique is very popular, 

and has been implemented in many important engineering applications. One important application of neural 

network-based controller is in the field of electrical power engineering, where the neural network-based controller 

concept has been employed to design the intelligent stabilizer for damping of power oscillation. This paper 

provides an overview on the neural network and its application in improving dynamic performance of an electrical 

power system. 
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I.   INTRODUCTION 

Interest in neural networks has made a comeback after a period of relative inactivity following the shortcomings of early 

neural networks (the single-layer perceptron), which was publicized in the late 1960s. The renewed interest was due, in 

part, to powerful new neural models, the multilayer perceptron and the feedback model of Hopfield, and to learning 

methods such as back-propagation; but it was also due to advances in hardware that have brought within reach the 

realization of neural networks with very large number of nodes [1]. 

The use of neural networks in control system can be seen as a natural step in the evolution of control methodology to meet 

new challenges. Looking back, the evolution in the control area has been fuelled by three major needs: the need to deal 

with increasing complex system, the need to accomplish demanding design requirement, and the need to attain these 

requirements with less precise advanced knowledge of the plant and its environment-that is, the need to control under 

increased uncertainty. Today, the need to control, in a better way, increasingly complex dynamical systems under 

significant uncertainty has led to a re-evaluation of the conventional control methods, and it has made the need for new 

methods quite apparent [1]. 

The application of neural networks in feedback control systems was first proposed by Werbos (1989). Since then, the 

neural networks control has been studied by many researchers. Recently, neural networks have entered the mainstream of 

control theory as a natural extension of adaptive control to systems that are nonlinear in the tuneable parameters. 

Therefore, it can be said that the neural network-based controller is one of the techniques of adaptive control. This 

adaptive controller is developed to overcome the shortcomings of the non-adaptive controllers. The non-adaptive (fixed-

parameter) controller is, in general, based on one particular system operating condition. The key disadvantage of this 

controller is that the possibility of the controller performance deterioration under other operating conditions. Furthermore, 

it is not possible to achieve maximum performance for each and every operating condition when the controller parameters 

are fixed. 

More recently, adaptive control techniques have been proposed to overcome the disadvantage of fixed-parameter 

controllers design. In this adaptive controller design, the controller parameters are determined online and adaptive to the 

changing in system operating conditions. This paper provides an overview on the neural network [2-8]. Previous works 

published in the area of adaptive damping controller designs using neural network-based controller concept are also 

presented in this paper [9-24]. 
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II.   NEURAL NETWORK THEORY 

A. Overview of the Neural Network Theory 

Artificial neural networks are composed of elements (which imitate the nerve cells or neurons of the biological nervous 

system) operating in parallel [2-8]. The neural network function is determined largely by the connections between the 

elements. The neural network can be trained to perform a particular function by adjusting the values of the connections 

(weights) between the elements [2]. The neural network is usually implemented by using electronic components or is 

simulated in software on a digital computer [4]. 

In terms of their architectures, the neural networks can broadly be classified into: (i) the feed-forward neural network, and 

(ii) the recurrent neural network [4]. In feed-forward neural network (FNN), the inputs to the neurons in each layer of the 

network are the output signals from the preceding layer only. A recurrent neural network (RNN) distinguishes itself from 

a FNN in that it has at least one feedback loop. In RNN, the neurons feed their output signals back to their own inputs 

(self-feedback) or to the inputs of other neurons.  

The multilayer feed-forward neural network or multilayer perceptron, trained by back-propagation algorithm, is the most 

widely used neural network [2]. This section will first discuss the architecture of FNN, the back-propagation algorithm 

and then the sizing of the FNN. 

B. Architecture of the FNN 

As mentioned in the previous discussion, neural networks consist of elements (or neurons) operating in parallel. A 

“neuron” in a neural network is sometimes referred to as a “unit”. A single input neuron is shown in Fig.1a. The scalar 

input p is multiplied by the scalar weight w to form wp. Here wp is the only argument of the transfer function (or 

activation function) f, which produces output a for the single input case. The neuron in Fig.1b has a scalar bias b. The bias 

is added to the product wp and shifts the function f by an amount b [2]. The bias is much like a weight, except that it has a 

constant input of 1. One can choose neurons with or without biases. The bias gives the network an extra variable, and so it 

might be expected that the networks with biases would be more powerful and flexible [2]. 

 

Fig.1: Single-input neuron 

(a) Without bias 

(b) With bias 

The transfer function f in Fig.1 can be a linear or a nonlinear function of argument r. Log-sigmoid, tan-sigmoid and linear 

transfer functions are the most commonly-used transfer functions for the neural network [2]. Note that w is the adjustable 

parameter or weighting coefficient of the connection between two neurons. The network can be trained to achieve a 

particular application requirement (e.g., function approximation) by adjusting the weighting coefficients. 

Typically, a neuron has more than one input. A neuron with R inputs is shown in Fig.2a. The individual inputs 

Rp2p1p ,,,   are weighted by the corresponding weights R1w12w11w ,,,  . The argument r of the transfer function in 

Fig.2a is then given in terms of the weight and input vectors as follows: 
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Commonly, the neural network with one neuron, even with many inputs, may not be sufficient. Two or more of the 

neurons shown in Fig.2a can be combined to operate in parallel to form a layer. A particular neural network could contain 

one or more such layers. A one-layer network (with R input elements and S neurons) is shown in Fig.2b. In this one-layer 

network, the input vector elements enter the network through the weight matrix W which has the form [2]: 
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A neural network can have several layers. Each layer has a weight matrix W, a bias vector b and an output vector a. A 

multilayer neural network starts with an input layer followed by one or more layers of hidden units (neurons). These 

hidden layers will then be connected to the output layer. The input data will be fed to the network through the input units. 

There is not any processing in the input layer. The input nodes just simply feed the data to be processed to the subsequent 

layers. 

The multilayer feed-forward neural networks are more powerful than single-layer neural networks. For instance, a 

network of two layers, the first layer is sigmoid and the second layer is linear (see Fig.3), can be trained to approximate 

most functions arbitrarily well [2]. Most practical neural networks have just two or three layers. Four or more layers are 

used rarely [2]. 

 

Fig.2: Multiple-input neuron(s) 

(a) Neuron with R inputs 

(b) S neurons with R inputs 

C. FNN Training Algorithm 

In neural network training stage, the network parameters (weights and biases) are adjusted to optimise the performance of 

the neural network. This optimisation process consists of two steps [2]. The first step is to determine a quantitative 

measure of the network performance and usually refers to as performance index. The performance index should be small 

when the network performs well and large when the network performs poorly. The second step of the optimisation 

process is to search the network parameters in order to reduce the performance index. 

Training the multilayer feed-forward neural network is usually carried out using optimisation methods by which the 

difference between the network response and target output is minimised. The network is presented with a set of pairs of 

input and output patterns: 
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Fig 3: Multilayer feed-forward neural network with one hidden layer 

In (4), pi is an input vector to the network, and ti is the corresponding target output vector, for i = 1, 2,.…., Q, where Q is 

the number of training cases. As each input is applied to the network, the network output is formed, and then compared to 

the target. The algorithm should adjust the network parameters which are the weights and biases in order to minimise the 

mean squared error [2]: 
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In (5), δ and a are the vectors of network weights and outputs respectively. 

III.   APPLICATION OF NEURAL NETWORK IN POWER SYSTEM DAMPING CONTROL 

In [9-24], neural network-based controllers have been proposed for improving the damping of power system oscillations. 

The neural network was trained over a wide range of operating conditions. Once trained, the controllers were adapted in 

real-time based on the system operating conditions to maintain a good damping characteristic under different system 

operating conditions. The summary of the proposed methods reported in [9-20] are presented in the following. 

a) Method Proposed in [9] 

In [9], the multilayer feed-forward neural network with two hidden layers (four neurons at each layer) has been employed 

to adapt PSS parameters according to generator loading conditions in SMIB system environment. The inputs to the neural 

network were machine real-power (PG) and power factor (PF) which characterise machine loading conditions. The outputs 

of the neural network were the desired PSS parameters. 

In order to obtain the network connection weights, a set of 300 training patterns have been compiled in the training 

process. The weights were computed using the method of gradient descent with adaptive learning rate. Each training 

pattern contains machine PG and PF (which serve as the inputs to the neural network), and the desired PSS parameters (the 

target output signals of the neural network). These PSS parameters have been determined using the pole-assignment 

method with the electromechanical mode fixed at the locations of 564610j3 . . 
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b) Method Proposed in [10] 

In the investigation reported in [10], the gains of PI controller for TCSC in SMIB system environment were determined 

adaptively by an artificial neural network. The inputs to the neural network include the measured real- and reactive-power 

(PL and QL) in the transmission line, and the outputs of the neural network were the desired PI controller gains. 

The network structure of two hidden layers with fifteen neurons in each layer has been used in the proposed neural 

network controller. The data for the network training were generated as in the following. For every combination of PL and 

QL within the region of interest ( 51LP60 ..  , 01LQ40 ..  ), the desired controller gains were computed. Pole 

assignment method has been used for determining the controller gains where the poles were assigned in the region of 

0154 .)Re(.  ; 68110.)Im(  . In [10], gradient descent method with adaptive learning rate has been used for 

updating the weights in the training process. 

c) Method Proposed in [11] 

A multi-input neural network PSS in SMIB system environment has been proposed and investigated in [11]. The 

generator speed deviation and the electrical power deviation together with their delayed responses and the delayed 

supplementary control signal in the excitation system were used as the inputs of the proposed neural network. The output 

of the neural network was the supplementary control signal. The neural network structure of one hidden layer with thirty-

five neurons has been employed in the proposed controller. Data for training the neural network were generated by 

applying the self-optimising pole-shifting control strategy, and the gradient descent back-propagation method has been 

used to train the multilayer network. 

d) Method Proposed in [12] 

Similar to the method proposed in [11], in [12], a neural network PSS in SMIB system environment has also been 

proposed. The neural network structure of two hidden layers with twenty neurons in each layer was used in the 

investigation. Data for training were also generated by applying the pole-shifting control strategy, and the gradient 

descent method has also been used to train the multilayer network. 

e) Method Proposed in [13, 14] 

In [13, 14], a neural network-based PSS has been proposed. The generator speed deviation or the electrical power 

deviation together with their delayed responses and the delayed supplementary control signal were used as the inputs of 

the proposed neural network, whereas, the output of the neural network was the supplementary control signal. 

Two hidden layers with thirty neurons in the first layer and ten neurons in the second layer have been used in the 

proposed controller. The neural network-based PSS was trained over a wide range of operating conditions where the 

generator power ranging from 0.1pu to 1.0pu and power factors ranging from 0.7 lead to 0.1 lag, also the disturbances 

such as governor input variations have been used to simulate the generator loading conditions. The self-optimising pole-

shifting control strategy was used to control the generator in the working conditions mentioned above and to generate data 

for training the neural network. The gradient descent back-propagation method has been used to train the multilayer 

network. 

f) Method Proposed in [15, 16] 

In [14, 15], neural networks and radial basis function networks were proposed for implementing PSS in a single-machine 

infinite bus system. Control coordination among different PSSs in multi-machine power system and/or SDCs is not 

considered. Furthermore, the changes in system configuration due to contingencies, which have a significant impact on 

electromechanical mode damping, are not discussed in the design procedure. 

g) Method Proposed in [17] 

In [17], a design procedure for online control coordination which leads to adaptive and optimal power system stabilisers 

(PSSs) and/or supplementary damping controllers (SDCs) of FACTS devices for enhancing the stability of the 

electromechanical modes in a multi-machine power system. The controller parameters are adaptive to the changes in 

system operating condition and/or configuration. Central to the design is the use of a neural network synthesised to give in 

its output layer the optimal controller parameters adaptive to system operating condition and configuration. A novel 

feature of the neural adaptive controller is that of representing the system configuration by a reduced nodal impedance 

matrix which is input to the neural network. Only power network nodes with direct connections to generators and FACTS 
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devices are retained in the reduced nodal impedance matrix. The system operating condition is represented in terms of the 

measured generator power loadings, which are also input to the neural network. For a representative power system, the 

neural network is trained and tested for a wide range of credible operating conditions and contingencies. Both eigenvalue 

calculations and time-domain simulations are used in the testing and verification of the dynamic performance of the 

neural adaptive controller. 

h) Method Proposed in [18] 

In [18], an approach for designing a self-tuning PSS based on ANN has been presented. The nodes in the input layer of 

the ANN receive generator real power output, generator reactive power output, and generator terminal voltage, while the 

nodes in the output layer provide the optimum PSS parameters (stabilizing gain and time constants). 

i) Method Proposed in [19] 

In [19], to enhance transient stability in a power system, a new intelligent controller is proposed to control a Static VAR 

compensator (SVC) located at the centre of transmission line. The controller is an online trained wavelet neural network 

controller (OTWNNC) with adaptive learning rates derived by the Lyapunov stability. During the online control process, 

the identification of system is not necessary, because of the learning ability of the proposed controller. 

j) Method Proposed in [20] 

In [20], a radial basis function neural network (RBFNN) was proposed for tuning the PSS parameters in SMIB system. 

Control coordination among different PSSs in multi-machine power system and/or SDCs is not considered. Furthermore, 

the changes in system configuration due to contingencies, which have a significant impact on electromechanical mode 

damping, are not discussed in the design procedure. 

k) Method Proposed in [21] 

Similar to the method proposed in [20], in [21], a probabilistic neural network (PNN) was proposed for tuning the PSS 

parameters in SMIB system. The PNN was trained with supervised training process of the ANN. The input and target data 

to train the PNN were obtained from the input and output of the conventional controller. It has been shown in [21] that the 

proposed PNN can give reasonable results at various loading conditions. 

l) Method Proposed in [22-24] 

The application of neural network in adaptive coordination of power system damping controllers, i.e. power system 

stabilizers (PSSs) and flexible alternating current transmission system (FACTS) controllers is investigated and presented 

in [22-24]. In the papers, the neural network is utilized to represent the relationship between the power system states 

(operating conditions and configurations) and the controller parameters (gains and time constants) which is generally 

nonlinear. The proposed adaptive power system damping controller is intended to enhance and maintain power system 

stability even if the system operating conditions and/or configurations change. 

IV.   CONCLUSION 

This paper has presented and discussed the popular adaptive control technique namely neural network-based controller. 

This adaptive controller is developed to overcome the shortcomings of the non-adaptive controllers. In this adaptive 

controller design, the controller parameters are determined online and adaptive to the changing in system operating 

conditions. The application of the adaptive controller in enhancing power system dynamic performance has also been 

presented in the paper. 
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